Notes for Lecture #32

Synchrotron Radiation

For this analysis we will use the geometry shown in Fig. 14.9 of Jackson. A particle with charge q is moving in a circular trajectory with radius ρ and speed v. Its trajectory as a function of time t is given by

$$ R_q(t) = \rho \sin(vt/\rho) \hat{x} + \rho (1 - \cos(vt/\rho)) \hat{y}. \quad (1) $$

Its velocity as a function time is given by

$$ v_q(t) = v \cos(vt/\rho) \hat{x} + v \sin(vt/\rho) \hat{y}. \quad (2) $$

The spectral intensity that we must evaluate is given by the expression (Eq. 14.67 in Jackson)

$$ \frac{d^2 I}{d\omega d\Omega} = \frac{q^2 \omega^2}{4\pi^2 c} \left| \int_{-\infty}^{\infty} \hat{r} \times (\hat{r} \times \beta) e^{i\omega(t - \hat{r} \cdot R_q(t)/c)} dt \right|^2. \quad (3) $$

After some algebra, this expression can be put into the form

$$ \frac{d^2 I}{d\omega d\Omega} = \frac{q^2 \omega^2 \beta^2}{4\pi^2 c} \left\{ |C_\parallel(\omega)|^2 + |C_\perp(\omega)|^2 \right\}, \quad (4) $$

where the amplitude for the light polarized along the y-axis is given by

$$ C_\parallel(\omega) = \int_{-\infty}^{\infty} dt \sin(vt/\rho) e^{i\omega(t - \hat{r} \cdot \beta)} \cos \theta \sin(vt/\rho)} \right|^2 + \frac{\gamma^2 \theta^2}{1 + \gamma^2 \theta^2} \left[K_{1/3} \left(\frac{\omega}{2\omega_c} (1 + \gamma^2 \theta^2)^{3/2} \right) \right]^2. \quad (8) $$

We will analyze this expression for two different cases. The first case, is appropriate for man-made synchrotrons used as light sources. In this case, the light is produced by short bursts of electrons moving close to the speed of light ($v \approx c(1 - 1/(2\gamma^2))$) passing a beam line port. In addition $\theta \approx 0$ and the relevant integration times t are close to $t \approx 0$. This results in the form shown in Eq. 14.79 of your text. It is convenient to rewrite this form in terms of a critical frequency

$$ \omega_c \equiv \frac{3c\gamma^3}{2\rho}. \quad (7) $$

The resultant intensity is then given by

$$ \frac{d^2 I}{d\omega d\Omega} = \frac{3q^2 \gamma^2}{4\pi^2 c} \left(\frac{\omega}{\omega_c} \right)^2 (1 + \gamma^2 \theta^2)^2 \left(K_{2/3} \left(\frac{\omega}{2\omega_c} (1 + \gamma^2 \theta^2)^{3/2} \right) \right)^2 + \frac{\gamma^2 \theta^2}{1 + \gamma^2 \theta^2} \left[K_{1/3} \left(\frac{\omega}{2\omega_c} (1 + \gamma^2 \theta^2)^{3/2} \right) \right]^2. \quad (8) $$
By plotting this expression as a function of ω, we see that the intensity is largest near $\omega \approx \omega_c$.

The second example of synchrotron radiation comes from a distant charged particle moving in a circular trajectory such that the spectrum represents a superposition of light generated over many complete circles. In this case, there is an interference effect which results in the spectrum consisting of discrete multiples of v/ρ. For this case we need to reconsider Eqs. 5 and 6. There is a very convenient Bessel function identity of the form:

$$e^{-ia \sin \alpha} = \sum_{m=-\infty}^{\infty} J_m(a)e^{-ima\alpha}. \quad (9)$$

Here $J_m(a)$ is a Bessel function of integer order m. In our case $a = \frac{\omega \rho}{c} \cos \theta$ and $\alpha = \frac{vt}{\rho}$.

Analyzing the “parallel” component we have

$$C_\parallel = \frac{c}{-i\omega \rho} \frac{\partial}{\partial \cos \theta} \int_{-\infty}^{\infty} dt e^{i\omega(t - \frac{t}{c} \cos \theta \sin(vt/\rho))} = \frac{c}{-i\omega \rho} \frac{\partial}{\partial \cos \theta} \sum_{m=-\infty}^{\infty} J_m\left(\frac{\omega \rho}{c} \cos \theta\right) 2\pi \delta(\omega - m\frac{v}{\rho}). \quad (10)$$

In determining this result, we have used the identity

$$\int_{-\infty}^{\infty} dt e^{i(\omega - m\frac{v}{\rho})t} = 2\pi \delta(\omega - m\frac{v}{\rho}). \quad (11)$$

Eq. 10 can be simplified to show that

$$C_\parallel = 2\pi i \sum_{m=-\infty}^{\infty} J'_m\left(\frac{\omega \rho}{c} \cos \theta\right) \delta(\omega - m\frac{v}{\rho}), \quad (12)$$

where $J'_m(a) \equiv \frac{dJ_m(a)}{da}$. The “perpendicular” component can be analyzed in a similar way, using integration by parts to eliminate the extra $\cos(vt/\rho)$ term in the argument. The result is

$$C_\perp = 2\pi \frac{\tan \theta}{v/c} \sum_{m=-\infty}^{\infty} J_m\left(\frac{\omega \rho}{c} \cos \theta\right) \delta(\omega - m\frac{v}{\rho}). \quad (13)$$

In both of these expressions, the sum over m includes both negative and positive values of m. However, only the positive values of ω and therefore positive values of m are of interest, and if we needed to use the negative m values, we could use the identity

$$J_{-m}(a) = (-1)^m J_m(a). \quad (14)$$

Combining these results, we find that the intensity spectrum for this case consists of a series of discrete frequencies which are multiples of v/ρ.

$$\frac{d^2I}{d\omega d\Omega} = \frac{q^2 \omega^2 \beta^2}{c} \sum_{m=0}^{\infty} \delta(\omega - m\frac{v}{\rho}) \left\{ \left[J'_m\left(\frac{\omega \rho}{c} \cos \theta\right)\right]^2 + \frac{\tan^2 \theta}{v^2/c^2} \left[J_m\left(\frac{\omega \rho}{c} \cos \theta\right)\right]^2 \right\}. \quad (15)$$

These results were derived by Julian Schwinger (Phys. Rev. 75, 1912-1925 (1949)). The discrete case is similar to the result quoted in Problem 14.15 in Jackson’s text. It should have some implications for Astronomical observations, but I have not yet found any references for that.