1.

The figure above shows the cross section of a magnetostatic solenoid which is uniform in the \hat{z} direction (perpendicular to the page). The current flows in the azimuthal $\hat{\phi}$ direction; specifically the current density is given in cylindrical coordinates by:

$$ J = \begin{cases} J_0 \hat{\phi} & a \leq \rho \leq b \\ 0 & \text{otherwise.} \end{cases} \quad (1) $$

Here J_0 is a constant, a and b denote the inner and outer diameters of the cylinder, respectively, and $\hat{\phi} = -\sin(\phi)\hat{x} + \cos(\phi)\hat{y}$.

(a) Show that the vector potential \mathbf{A} for this system can be written as

$$ \mathbf{A} = f(\rho)\hat{\phi}, \quad (2) $$
where the scalar function $f(\rho)$ satisfies the equation

$$\left[\frac{d^2}{d\rho^2} + \frac{1}{\rho} \frac{d}{d\rho} - \frac{1}{\rho^2} \right] f(\rho) = \begin{cases} -\mu_0 J_0 & a \leq \rho \leq b \\ 0 & \text{otherwise.} \end{cases}$$

(3)

(b) Find the function $f(\rho)$ in the three regions: $0 \leq \rho \leq a$, $a \leq \rho \leq b$, and $\rho \geq b$.

(c) Find the \mathbf{B} field in the three regions. Check to make sure that your answer is consistent with what you know about solenoids. (Hint: $\mathbf{B} \equiv 0$ outside the solenoid.)