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Notes for Lecture #16

Vector potentials in magnetostatics

The vector potential which vanishes at infinity and corresponds to a confined current density
distribution J(r) is given by

A(r) =
µ0

4π

∫
d3r′

J(r′)
|r− r′| . (1)

This expression is useful if the current density J(r) is confined within a finite region of
space. Consider the following example corresponding to a rotating charged sphere of radius
a, with ρ0 denoting the uniform charge density within the sphere and ω denoting the angular
rotation of the sphere:

J(r′) =

{
ρ0ω × r′ for r′ ≤ a
0 otherwise

(2)

In order to evaluate the vector potential (1) for this problem, we can make use of the
expansion:

1

|r− r′| =
∑

lm

4π

2l + 1

rl
<

rl+1
>

Ylm(r̂)Y ∗
lm(r̂′). (3)

Noting that

r′ = r′
√

4π

3

(
Y1−1(r̂′)

x̂ + iŷ√
2

+ Y11(r̂′)
−x̂ + iŷ√

2
+ Y10(r̂′)ẑ

)
, (4)

we see that the angular integral result takes the simple form:

∫
dΩ′ ∑

m

Ylm(r̂)Y ∗
lm(r̂′) r′ =

r′

r
r δl1. (5)

Therefore the vector potential for this system is:

A(r) =
µ0ρ0ω × r

3r

∫ a

0
dr′ r′3

r<

r2
>

, (6)

which can be evaluated as:

A(r) =





µ0ρ0ω×r
3

(
a2

2
− 3r2

10

)
for r ≤ a

µ0ρ0ω×r
3r3

a5

5
for r ≥ a

. (7)

As another example, consider the current associated with an electron in a spherical atom. In
this case, we assume that the current density is due to an electron in a bound atomic state
with quantum numbers |nlml〉, as described by a wavefunction ψnlml

(r), where the azimuthal



quantum number ml is associated with a factor of the form eimlφ. For such a wavefunction
the quantum mechanical current density operator can be evaluated:

J(r) =
−eh̄
2mei

(
ψ∗nlml

∇ψnlml
− ψnlml

∇ψ∗nlml

)
. (8)

Since the only complex part of this wavefunction is associated with the azimuthal quantum
number, this can be written:

J(r) =
−eh̄

2meir sin θ

(
ψ∗nlml

∂

∂φ
ψnlml

− ψnlml

∂

∂φ
ψ∗nlml

)
φ̂ =

−eh̄mlφ̂

mer sin θ
|ψnlml

|2 . (9)

where me denotes the electron mass and e denotes the magnitude of the electron charge.

For example, consider the |nlm = 211〉 state of a H atom:

ψ211(r) = −
√

1

64πa3

r

a
e−r/(2a) sin θeiφ, (10)

and

J(r′) =
−eh̄

64meπa5
e−r′/a ẑ× r′, (11)

where a here denotes the Bohr radius. Using arguments similar to those above, we find that

A(r) =
−eh̄µ0ẑ× r

192meπa5r

∫ ∞

0
dr′ r′3 e−r′/a r<

r2
>

. (12)

This expression can be integrated to give:

A(r) =
−eh̄µ0ẑ× r

8meπr3

[
1− e−r/a

(
1 +

r

a
+

r2

2a2
+

r3

8a3

)]
. (13)


