February 25, 2008

Notes for Lecture #16

Vector potentials in magnetostatics

The vector potential which vanishes at infinity and corresponds to a confined current density

distribution J(r) is given by
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This expression is useful if the current density J(r) is confined within a finite region of
space. Consider the following example corresponding to a rotating charged sphere of radius
a, with py denoting the uniform charge density within the sphere and w denoting the angular
rotation of the sphere:
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In order to evaluate the vector potential (1) for this problem, we can make use of the
expansion:
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Noting that
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we see that the angular integral result takes the simple form:
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Therefore the vector potential for this system is:
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which can be evaluated as:
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As another example, consider the current associated with an electron in a spherical atom. In
this case, we assume that the current density is due to an electron in a bound atomic state
with quantum numbers |nlm;), as described by a wavefunction ¢, (r), where the azimuthal



quantum number my is associated with a factor of the form ¢™?. For such a wavefunction
the quantum mechanical current density operator can be evaluated:
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Since the only complex part of this wavefunction is associated with the azimuthal quantum
number, this can be written:
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where m, denotes the electron mass and e denotes the magnitude of the electron charge.

For example, consider the |nlm = 211) state of a H atom:
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where a here denotes the Bohr radius. Using arguments similar to those above, we find that
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This expression can be integrated to give:
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