April 16, 2008

Notes for Lecture #33

Synchrotron Radiation

For this analysis we will use the geometry shown in Fig. 14.9 of Jackson. A particle with
charge ¢ is moving in a circular trajectory with radius p and speed v. Its trajectory as a
function of time ¢ is given by

R (t) = psin(vt/p)X + p (1 — cos(vt/p)) ¥ (1)
Its velocity as a function time is given by
v, (t) = vcos(vt/p)X + vsin(vt/p)y. (2)

The spectral intensity that we must evaluate is given by the expression (Eq. 14.67 in Jackson)
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After some algebra, this expression can be put into the form
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where the amplitude for the light polarized along the y-axis is given by
C” (w) _ / dt Sin('l]t/p)@iw(ti% cos sin(vt/p)) (5)
and the amplitude for the light polarized perpendicular to ¥ and t is given by
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We will analyze this expression for two different cases. The first case, is appropriate for
man-made synchrotrons used as light sources. In this case, the light is produced by short
bursts of electrons moving close to the speed of light (v &~ ¢(1 —1/(2v?)) passing a beam line
port. In addition f =~ 0 and the relevant integration times ¢ are close to ¢ =~ 0. This results
in the form shown in Eq. 14.79 of your text. It is convenient to rewrite this form in terms
of a critical frequency
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The resultant intensity is then given by
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By plotting this expression as a function of w, we see that the intensity is largest near w ~ w..

The second example of synchroton radiation comes from a distant charged particle moving
in a circular trajectory such that the spectrum represents a superposition of light generated
over many complete circles. In this case, there is an interference effect which results in the
spectrum consisting of discrete multiples of v/p. For this case we need to reconsider Egs. 5
and 6. There is a very convenient Bessel function identity of the form:
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Here Jy,(a) is a Bessel function of integer order m. In our case a = “£cosfl and a = %.

Analyzing the “parallel” component we have
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In determining this result, we have used the identity
/ dte’ @™m0 = 276 (w — mg). (11)
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Eq. 10 can be simplified to show that
C|= QWZZJ/ ( 0089) (5(w—mg), (12)
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where J, (a) = d‘]g‘ia(a). The “perpendicular” component can be analyzed in a similar way,
using integration by parts to eliminate the extra cos(vt/p) term in the argument. The result
is p
tan v
CL =2n—— ZJ (cosQ) d(w —m—). (13)
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In both of these expressions, the sum over m includes both negative and positive values of
m. However, only the positive values of w and therefore positive values of m are of interest,

and if we needed to use the negative m values, we could use the identity
J_m(a) = (=1)"Jn(a). (14)

Combining these results, we find that the intensity spectrum for this case consists of a series
of discrete frequencies which are multiples of v/p.
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These results were derived by Julian Schwinger (Phys. Rev. 75, 1912-1925 (1949)). The
discrete case is similar to the result quoted in Problem 14.15 in Jackson’s text. It should have
some implications for Astronomical observations, but I have not yet found any references for
that.



