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Notes for Lecture #33

Synchrotron Radiation

For this analysis we will use the geometry shown in Fig. 14.9 of Jackson. A particle with
charge q is moving in a circular trajectory with radius ρ and speed v. Its trajectory as a
function of time t is given by

Rq(t) = ρ sin(vt/ρ)x̂ + ρ (1− cos(vt/ρ)) ŷ. (1)

Its velocity as a function time is given by

vq(t) = v cos(vt/ρ)x̂ + v sin(vt/ρ)ŷ. (2)

The spectral intensity that we must evaluate is given by the expression (Eq. 14.67 in Jackson)
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After some algebra, this expression can be put into the form
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where the amplitude for the light polarized along the y-axis is given by
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and the amplitude for the light polarized perpendicular to ŷ and r̂ is given by
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We will analyze this expression for two different cases. The first case, is appropriate for
man-made synchrotrons used as light sources. In this case, the light is produced by short
bursts of electrons moving close to the speed of light (v ≈ c(1−1/(2γ2)) passing a beam line
port. In addition θ ≈ 0 and the relevant integration times t are close to t ≈ 0. This results
in the form shown in Eq. 14.79 of your text. It is convenient to rewrite this form in terms
of a critical frequency

ωc ≡ 3cγ3

2ρ
. (7)

The resultant intensity is then given by
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By plotting this expression as a function of ω, we see that the intensity is largest near ω ≈ ωc.

The second example of synchroton radiation comes from a distant charged particle moving
in a circular trajectory such that the spectrum represents a superposition of light generated
over many complete circles. In this case, there is an interference effect which results in the
spectrum consisting of discrete multiples of v/ρ. For this case we need to reconsider Eqs. 5
and 6. There is a very convenient Bessel function identity of the form:

e−ia sin α =
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Here Jm(a) is a Bessel function of integer order m. In our case a = ωρ
c

cos θ and α = vt
ρ
.

Analyzing the “parallel” component we have
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In determining this result, we have used the identity

∫ ∞
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Eq. 10 can be simplified to show that
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where J ′m(a) ≡ dJm(a)
da

. The “perpendicular” component can be analyzed in a similar way,
using integration by parts to eliminate the extra cos(vt/ρ) term in the argument. The result
is
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In both of these expressions, the sum over m includes both negative and positive values of
m. However, only the positive values of ω and therefore positive values of m are of interest,
and if we needed to use the negative m values, we could use the identity

J−m(a) = (−1)mJm(a). (14)

Combining these results, we find that the intensity spectrum for this case consists of a series
of discrete frequencies which are multiples of v/ρ.
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These results were derived by Julian Schwinger (Phys. Rev. 75, 1912-1925 (1949)). The
discrete case is similar to the result quoted in Problem 14.15 in Jackson’s text. It should have
some implications for Astronomical observations, but I have not yet found any references for
that.


