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Notes for Lecture #5

Interesting properties of the Poisson and Laplace Equations

Mean value theorem for solutions to the Laplace equation

Consider an electrostatic field Φ(r) in a charge-free region so that it satisfies the Laplace
equation:

∇2Φ(r) = 0. (1)

The “mean value theorem” value theorem (problem 1.10 of your textbook) states that the
value of Φ(r) at the arbitrary (charge-free) point r is equal to the average of Φ(r′) over the
surface of any sphere centered on the point r (see Jackson problem #1.10). One way to
prove this theorem is the following. Consider a point r′ = r + u, where u will describe a
sphere of radius R about the fixed point r. We can make a Taylor series expansion of the
electrostatic potential Φ(r′) about the fixed point r:

Φ(r + u) = Φ(r) + u · ∇Φ(r) +
1

2!
(u · ∇)2Φ(r) +

1

3!
(u · ∇)3Φ(r) +

1

4!
(u · ∇)4Φ(r) + · · · . (2)

According to the premise of the theorem, we want to integrate both sides of the equation 2
over a sphere of radius R in the variable u:

∫

sphere
dSu = R2

∫ 2π

0
dφu

∫ +1

−1
d cos(θu). (3)

We note that

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)1 = 4πR2, (4)

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)u · ∇ = 0, (5)

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)(u · ∇)2 =

4πR4

3
∇2, (6)

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)(u · ∇)3 = 0, (7)

and

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)(u · ∇)4 =

4πR6

5
∇4. (8)

Since ∇2Φ(r) = 0, the only non-zero term of the average it thus the first term:

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)Φ(r + u) = 4πR2Φ(r), (9)



or

Φ(r) =
1

4πR2
R2

∫ 2π

0
dφu

∫ +1

−1
d cos(θu)Φ(r + u) ≡ 1

4πR2

∫

sphere
dSuΦ(r + u). (10)

Since this result is independent of the radius R, we see that we have proven the theorem.

Form of Green’s function solutions to the Poisson equation

According to Eq. 1.35 of your text for any two three-dimensional functions φ(r) and ψ(r),

∫

Vol

(
φ(r)∇2ψ(r)− ψ(r)∇2φ(r)

)
d3r =

∮

Surf
(φ(r)∇ψ(r)− ψ(r)∇φ(r)) · r̂d2r, (11)

where r̂ denotes a unit vector normal to the integration surface. We can choose to evaluate
this expression with φ(r) = Φ(r) (the electrostatic potential) and ψ(r) = G(r, r′), and also
make use of the identities:

∇2Φ(r) = −ρ(r)
ε0

(12)

and
∇2G(r, r′) = −4πδ(r− r′). (13)

Then, the Green’s identity (11) becomes

−4π
∫

Vol

(
Φ(r)δ(r− r′)−G(r, r′)

ρ(r)

4πε0

)
d3r =

∮

Surf
{Φ(r)∇G(r, r′)−G(r, r′)∇Φ(r)} · r̂d2r.

(14)

This expression can be further evaluated. If the arbitrary position, r′ is included in the
integration volume, then the equation (14) becomes

Φ(r′) =
∫

Vol
G(r, r′)

ρ(r)

4πε0

d3r +
1

4π

∮

Surf
{G(r, r′)∇Φ(r)− Φ(r)∇G(r, r′)} · r̂d2r. (15)

This expression is the same as Eq. 1.42 of your text if we switch the variables r′ ⇔ r and
also use the fact that Green’s function is symmetric in its arguments: G(r, r′) ≡ G(r′, r).


