1. Suppose that an electromagnetic wave of pure (real) frequency ω is traveling along the z-axis of a wave guide having a square cross section with side dimension a composed of a medium having a real permittivity constant ϵ and a real permeability constant μ. Suppose that the wave is known to have the form:

$$E(r, t) = \mathbb{R}\left\{H_0 e^{ikz-i\omega t} (i\mu \omega) \frac{\pi}{a} \sin\left(\frac{\pi x}{a}\right) \hat{y}\right\}$$

$$H(r, t) = \mathbb{R}\left\{H_0 e^{ikz-i\omega t} \left[-ik \frac{\pi}{a} \sin\left(\frac{\pi x}{a}\right) \hat{x} + \cos\left(\frac{\pi x}{a}\right) \hat{z}\right]\right\}.$$

Here H_0 denotes a real amplitude, and the parameter k is assumed to be real and equal to

$$k \equiv \sqrt{\omega^2 - \left(\frac{\pi}{a}\right)^2},$$

where $\omega > \frac{\pi}{a}$. Find the form of the time-averaged Poynting vector

$$\langle S \rangle_{\text{avg}} \equiv \frac{1}{2} \mathbb{R}\{E(r, t) \times H^*(r, t)\}$$

for this electromagnetic wave.