Additional Notes for Lecture \#6 - Mean value theorem for solutions to the Laplace equation

Consider an electrostatic field $\Phi(\mathbf{r})$ in a charge-free region so that it satisfies the Laplace equation:

$$
\begin{equation*}
\nabla^{2} \Phi(\mathbf{r})=0 \tag{1}
\end{equation*}
$$

The "mean value theorem" value theorem (problem 1.10 of your textbook) states that the value of $\Phi(\mathbf{r})$ at the arbitrary (charge-free) point \mathbf{r} is equal to the average of $\Phi\left(\mathbf{r}^{\prime}\right)$ over the surface of any sphere centered on the point \mathbf{r} (see Jackson problem \#1.10). One way to prove this theorem is the following. Consider a point $\mathbf{r}^{\prime}=\mathbf{r}+\mathbf{u}$, where \mathbf{u} will describe a sphere of radius R about the fixed point \mathbf{r}. We can make a Taylor series expansion of the electrostatic potential $\Phi\left(\mathbf{r}^{\prime}\right)$ about the fixed point \mathbf{r} :

$$
\begin{equation*}
\Phi(\mathbf{r}+\mathbf{u})=\Phi(\mathbf{r})+\mathbf{u} \cdot \nabla \Phi(\mathbf{r})+\frac{1}{2!}(\mathbf{u} \cdot \nabla)^{2} \Phi(\mathbf{r})+\frac{1}{3!}(\mathbf{u} \cdot \nabla)^{3} \Phi(\mathbf{r})+\frac{1}{4!}(\mathbf{u} \cdot \nabla)^{4} \Phi(\mathbf{r})+\cdots \tag{2}
\end{equation*}
$$

According to the premise of the theorem, we want to integrate both sides of the equation 2 over a sphere of radius R in the variable \mathbf{u} :

$$
\begin{equation*}
\int_{\text {sphere }} d S_{u}=R^{2} \int_{0}^{2 \pi} d \phi_{u} \int_{-1}^{+1} d \cos \left(\theta_{u}\right) \tag{3}
\end{equation*}
$$

We note that

$$
\begin{gather*}
R^{2} \int_{0}^{2 \pi} d \phi_{u} \int_{-1}^{+1} d \cos \left(\theta_{u}\right) 1=4 \pi R^{2}, \tag{4}\\
R^{2} \int_{0}^{2 \pi} d \phi_{u} \int_{-1}^{+1} d \cos \left(\theta_{u}\right) \mathbf{u} \cdot \nabla=0, \tag{5}\\
R^{2} \int_{0}^{2 \pi} d \phi_{u} \int_{-1}^{+1} d \cos \left(\theta_{u}\right)(\mathbf{u} \cdot \nabla)^{2}=\frac{4 \pi R^{4}}{3} \nabla^{2}, \tag{6}\\
R^{2} \int_{0}^{2 \pi} d \phi_{u} \int_{-1}^{+1} d \cos \left(\theta_{u}\right)(\mathbf{u} \cdot \nabla)^{3}=0, \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
R^{2} \int_{0}^{2 \pi} d \phi_{u} \int_{-1}^{+1} d \cos \left(\theta_{u}\right)(\mathbf{u} \cdot \nabla)^{4}=\frac{4 \pi R^{6}}{5} \nabla^{4} \tag{8}
\end{equation*}
$$

Since $\nabla^{2} \Phi(\mathbf{r})=0$, the only non-zero term of the average it thus the first term:

$$
\begin{equation*}
R^{2} \int_{0}^{2 \pi} d \phi_{u} \int_{-1}^{+1} d \cos \left(\theta_{u}\right) \Phi(\mathbf{r}+\mathbf{u})=4 \pi R^{2} \Phi(\mathbf{r}) \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\Phi(\mathbf{r})=\frac{1}{4 \pi R^{2}} R^{2} \int_{0}^{2 \pi} d \phi_{u} \int_{-1}^{+1} d \cos \left(\theta_{u}\right) \Phi(\mathbf{r}+\mathbf{u}) \equiv \frac{1}{4 \pi R^{2}} \int_{\text {sphere }} d S_{u} \Phi(\mathbf{r}+\mathbf{u}) \tag{10}
\end{equation*}
$$

Since this result is independent of the radius R, we see that we have proven the theorem.

