
January 31, 2009

Notes for Lectures 8 & 9 –
Introduction to grid-based methods for solving Poisson and Laplace Equations

Finite difference methods

The basis for grid-based finite difference methods is a Taylor’s series expansion:

Φ(r + u) = Φ(r) + u · ∇Φ(r) +
1
2!

(u · ∇)2Φ(r) +
1
3!

(u · ∇)3Φ(r) +
1
4!

(u · ∇)4Φ(r) + · · · . (1)

We will work out some explicit formulae for a 2-dimensional regular grid with h denoting the step
length. For the 2-dimensional Poisson equation we have(

∂2

∂x2
+

∂2

∂y2

)
Φ(x, y) = −ρ(x, y)

ε0
. (2)

We note that a sum of 4 surrounding edge values gives:

SA ≡ Φ(x+ h, y) + Φ(x− h, y) + Φ(x, y + h) + Φ(x, y − h) (3)

= 4Φ(x, y) + h2

(
∂2

∂x2
+

∂2

∂y2

)
Φ(x, y) +

h4

12

(
∂4

∂x4
+

∂4

∂y4

)
Φ(x, y) + (h6 . . .).

Similarly, a sum of 4 surrounding corner values gives:

SB ≡ Φ(x+ h, y + h) + Φ(x− h, y + h) + Φ(x+ h, y − h) + Φ(x− h, y − h) (4)

= 4Φ(x, y) + 2h2

(
∂2

∂x2
+

∂2

∂y2

)
Φ(x, y) +

h4
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(
∂4

∂x4
+

∂4

∂y4
+ 6

∂2

∂x2

∂2

∂y2

)
Φ(x, y) + (h6 . . .).

We note that we can combine these two results into the relation

SA +
1
4
SB = 5Φ(x, y) +

3h2

2
∇2Φ(x, y) +

h4

8
∇2∇2Φ(x, y) + (h6 . . .). (5)

This result can be written in the form;

Φ(x, y)− 1
5
SA −

1
20
SB =

3h2

10ε0
ρ(x, y) +

h4

40ε0
∇2ρ(x, y). (6)

In general, the right hand side of this equation is known, and most of the left hand side of the
equation, except for the boundary values are unknown. It can be used to develop a set of linear
equations for the values of Φ(x, y) on the grid points.

For example, consider a solution to the Laplace equation in the square region 0 ≤ x ≤ a, 0 ≤ y ≤ a
which Φ(x, 0) = Φ(0, y) = Φ(a, y) = 0 and Φ(x, a) = V0. We will first analyze this system with
a mesh of 9 points generated with a grid spacing of h = a

2 . In this case, Φ(h, h) ≡ Φ(a
2 ,

a
2 )

is unknown, while Φ(0, 2h) = Φ(h, 2h) = Φ(2h, 2h) = V0 and Φ(0, 0) = Φ(h, 0) = Φ(2h, 0) =
Φ(0, h) = Φ(h, 2h) = 0. For this example, Eq. 6 states
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Figure 1: 3× 3 grid for solution of the Poisson equation within a 2-dimensional square.

Φ5 =
1
5
(Φ(h, 0)+Φ(0, h)+Φ(2h, h)+Φ(h, 2h))+

1
20

(Φ(0, 0)+Φ(2h, 0)+Φ(0, 2h)+Φ(2h, 2h)) =
3
10
V0.

(7)
This results is within 20% of the exact answer of Φ(a

2 ,
a
2 ) = 0.25V0. If analyze this same system with

the next more accurate grid, h = a
4 , using the symmetry of the system Φ(x, y) = Φ(a−x, y), we have

now 6 unknown values {Φ(h, h),Φ(2h, h),Φ(h, 2h),Φ(2h, 2h),Φ(h, 3h),Φ(2h, 3h)} and boundary
values Φ(0, 4h) = Φ(h, 4h) = Φ(2h, 4h) = V0 and Φ(0, 3h) = Φ(0, 2h) = Φ(0, h) = Φ(0, 0) =
Φ(h, 0) = Φ(2h, 0) = 0.

This results in the following relations between the grid points:

Φ(h, 3h)−1
5
(Φ(h, 4h)+Φ(0, 3h)+Φ(2h, 3h)+Φ(h, 2h))− 1

20
(Φ(0, 4h)+Φ(2h, 4h)+Φ(2h, 2h)+Φ(0, 2h)) = 0,

(8)

Φ(2h, 3h)−1
5
(Φ(2h, 4h)+Φ(3h, 3h)+Φ(h, 3h)+Φ(2h, 2h))− 1

20
(Φ(h, 4h)+Φ(3h, 4h)+Φ(3h, 2h)+Φ(h, 2h)) = 0,

(9)

Φ((h, 2h)−1
5
(Φ(h, 3h)+Φ(0, 2h)+Φ(2h, 2h)+Φ(h, h))− 1

20
(Φ(0, 3h)+Φ(2h, 3h)+Φ(0, h)+Φ(2h, h)) = 0,

(10)

Φ(2h, 2h)−1
5
(Φ(2h, 3h)+Φ(h, 2h)+Φ(3h, 2h)+Φ(2h, h))− 1

20
(Φ(3h, 3h)+Φ(h, 3h)+Φ(3h, h)+Φ(h, h)) = 0,

(11)

Φ(h, h)− 1
5
(Φ(h, 2h)+Φ(0, h)+Φ(2h, h)+Φ(h, 0))− 1

20
(Φ(0, 2h)+Φ(2h, 2h)+Φ(0, 0)+Φ(2h, 0)) = 0,

(12)

Φ(2h, 0)−1
5
(Φ(2h, 2h)+Φ(3h, h)+Φ(h, h)+Φ(2h, 0))− 1

20
(Φ(h, 2h)+Φ(3h, 2h)+Φ(h, 0)+Φ(3h, 0)) = 0.

(13)
These equations can be cast into the form of a matrix problem which can be easily solved using
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Figure 2: 5× 5 grid for solution of the Poisson equation within a 2-dimensional square.

Maple:

1 −1/5 −1/5 −1/20 0 0

−2/5 1 −1/10 −1/5 0 0

−1/5 −1/20 1 −1/5 −1/5 −1/20

−1/10 −1/5 −2/5 1 −1/10 −1/5

0 0 −1/5 −1/20 1 −1/5

0 0 −1/10 −1/5 −2/5 1





Φ(h, 3h)

Φ(2h, 3h)

Φ(h, 2h)

Φ(2h, 2h)

Φ(h, h)

Φ(2h, h)


=



3/10

3/10

0

0

0

0


V0. (14)

The solution to these equations and the exact results are found to be:

Φ(h, 3h)

Φ(2h, 3h)

Φ(h, 2h)

Φ(2h, 2h)

Φ(h, h)

Φ(2h, h)


=



0.4628135839

0.5566467694

0.1920222635

0.2615955473

0.07150923611

0.1001250302


V0; (exact) =



.4320283318

.5405292183

.1820283318

0.25

.06797166807

.09541411792


V0. (15)

We see that the results obtained with a smaller mesh has is much closer to the exact results than
those for the larger mesh.



Introduction to Finite element method

The finite element approach is based on an expansion of the unknown electrostatic potential in
terms of known grid-based functions of fixed shape. In two dimensions, using the indices {i, j} to
reference the grid, we can denote the shape functions as {φij(x, y)}. The finite element expansion
of the potential in two dimensions can take the form:

4πε0Φ(x, y) =
∑
ij

ψijφij(x, y), (16)

where ψij represents the amplitude associated with the shape function φij(x, y). The amplitude
values can be determined for a given solution of the Poisson equation:

−∇2 (4πε0Φ(x, y)) = 4πρ(x, y), (17)

by solving a linear algebra problem of the form∑
ij

Mkl,ijψij = Gkl, (18)

where

Mkl,ij ≡
∫
dx

∫
dy∇φkl(x, y) · ∇φij(x, y) and Gkl ≡

∫
dx

∫
dyφkl(x, y) 4πρ(x, y). (19)

In obtaining this result, we have assumed that the boundary values vanish. This will be ensured
by our choice of the functional form of the shape functions φij(x, y). In order for this result to be
useful, we need to be able evaluate the integrals for Mkl,ij and for Gkl. In the latter case, we need
to know the form of the charge density. The form of Mkl,ij only depends upon the form of the
shape functions. If we take these functions to be:

φij(x, y) ≡ Xi(x)Yj(y), (20)

where

Xi(x) ≡
{ (

1− |x−xi|
h

)
for xi − h ≤ x ≤ xi + h

0 otherwise
, (21)

and Yj(y) has a similar expression in the variable y. Then

Mkl,ij ≡
∫
dx

∫
dy

[
dXk(x)
dx

dXi(x)
dx

Yl(y)Yj(y) + Xk(x)Xi(x)
dYl(y)
dy

dYj(y)
dy

]
. (22)

There are four types of non-trivial contributions to these values:∫ xi+h

xi−h
(Xi(x))

2 dx = h

∫ 1

−1
(1− |u|)2du =

2h
3
, (23)

∫ xi+h

xi−h
(Xi(x)Xi+1(x)) dx = h

∫ 1

0
(1− u)udu =

h

6
, (24)

∫ xi+h

xi−h

(
dXi(x)
dx

)2

dx =
1
h

∫ 1

−1
du =

2
h
, (25)

and ∫ xi+h

xi−h

(
dXi(x)
dx

dXi+1(x)
dx

)
dx = −1

h

∫ 1

0
du =

−1
h
. (26)



These basic ingredients lead to the following distinct values for the matrix:

Mkl,ij =


8
3 for k = i and l = j
−1

3 for k − i = ±1 and/or l − j = ±1
0 otherwise

. (27)

For problems in which the boundary values are 0, Eq. 18 then can be used to find all of the interior
amplitudes ψij . In our case, we have the boundary conditions Φ(x, 0) = Φ(0, y) = Φ(a, y) = 0
and Φ(x, a) = V0. Using the same indexing as in Fig. 2, this means that Ψ(0, 4h) = Ψ(h, 4h) =
Ψ(2h, 4h) = V0. The finite element approach for this problem thus can be put into the matrix form
for analysis by Maple:

8/3 −1/3 −1/3 −1/3 0 0

−2/3 8/3 −2/3 −1/3 0 0

−1/3 −1/3 8/3 −1/3 −1/3 −1/3

−2/3 −1/3 −2/3 8/3 −2/3 −1/3

0 0 −1/3 −1/3 8/3 −1/3

0 0 −2/3 −1/3 −2/3 8/3





Φ(h, 3h)

Φ(2h, 3h)

Φ(h, 2h)

Φ(2h, 2h)

Φ(h, h)

Φ(2h, h)


=



1

1

0

0

0

0


V0. (28)

The solution to these equations and the exact results are found to be:

Φ(h, 3h)

Φ(2h, 3h)

Φ(h, 2h)

Φ(2h, 2h)

Φ(h, h)

Φ(2h, h)


=



0.5070276498

.5847926267

0.1928571429

0.2785714286

0.07154377880

0.1009216590


V0; (exact) =



.4320283318

.5405292183

.1820283318

0.25

.06797166807

.09541411792


V0. (29)

We see that the results are similar to those obtained using the finite difference approach.


