PHY 745 - Problem Set \#3

This homework is due Monday, January 26, 2009.
Continue reading Chapter 3 in Tinkham.

1. Consider the following 2×2 "normal" matrix $\left(N N^{\dagger}=N^{\dagger} N\right)$ in terms of real constants a, b, β, and γ.

$$
N=\left(\begin{array}{cc}
a & b \mathrm{e}^{i \beta} \\
b \mathrm{e}^{i \gamma} & a
\end{array}\right) .
$$

(a) Find the eigenvalues λ_{i} and eigenvectors v_{i}

$$
N v_{i}=\lambda_{i} v_{i} .
$$

(b) Show that

$$
N^{\dagger} v_{i}=\lambda_{i}^{*} v_{i}
$$

(c) Find the relationships between the constants for the case that N is Hermitian.
(d) Find the relationships between the constants for the case that N is unitary.

