February 24, 2011

PHY 712 Notes for Lecture #17

Derivation of the Liénard-Wiechert potentials and fields

Consider a point charge ¢ moving on a trajectory R,(t). We can write its charge density as

p(r,t) = q0°(r — Ry(1)),

and the current density as ‘
J(I‘, t) = qRq(t)53(r - Rq(t))7

where
dR,(t)

dt
Evaluating the scalar and vector potentials in the Lorentz gauge,
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We performing the integrations over first d3r’ and then dt’, and make use of the fact that

for any function of ¢/,
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where the “retarded time” is defined to be

fo=1— r — Rq(tr)l'
c
We find )
q
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where we have used the shorthand notation R = r — R,(t,) and v = R,(t,).

In order to find the electric and magnetic fields, we need to evaluate

_ OA(r,t)

E(r,t) = —V®(r,t) AT
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and

B(r,t) =V x A(r,t). (11)

The trick of evaluating these derivatives is that the retarded time (7) depends on position r
and on itself. We can show the following results using the shorthand notation defined above:

R
Vi =Ry (12)
and ot R
e () (13)

Evaluating the gradient of the scalar potential, we find:
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and

COA(rt) ¢ 1 VR ﬁ_V-R_V-R VR R_V-R (15)
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These results can be combined to determine the electric field:

E(r,t) = 4:60 T —1V;R)3 [(R— "f) (1 - Zj) 4 (R x {(R— "R) x V})] . (16)
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We can also evaluate the curl of A to find the magnetic field:
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One can show that the electric and magnetic fields are related according to

B(r,t) = 1
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