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Notes for Lecture #21

Electromagnetic wave guides

In order to understand the operation of a wave guide, we must first learn how electromagnetic
waves behave in a dissipative medium. A plane wave solution to Maxwell’s equations of the
form:

E = E0e
ikk̂·r−iωt and B =

k

ω
k̂× E0e

ikk̂·r−iωt (1)

for the electric and magnetic fields, with the wave vector k satisfying the relation:

k2 = ω2µε ≡ R+ iI. (2)

We can determine the complex wavevector kr + iki according to

kr =

(√
R2 + I2 +R

2

)1/2

and ki =

(√
R2 + I2 −R

2

)1/2

(3)

The form of the frequency dependent constants R and I depend on the materials. For the
Drude model at low frequency (Eq. 7.56), R = ω2µεb and I = ωµσ, for example. The
value of ki determines the rate of decay of the field amplitudes in the vicinity of the surface,
with the skin depth given by δ ≡ 1/ki. In the limit that I � R, as in the case of a good

conductor at low frequency, δ ≈ (2/(ωµσ))1/2.

For an ”ideal” conductor I → ∞, so that the fields are confined to the surface. Because of
the field continuity conditions at the surface of the conductor, this means that, Htangential 6= 0
(because there can be a surface current), Dnormal 6= 0 (because there can be a surface charge),
but Bnormal = 0 and Etangential = 0.

Suppose we construct a wave guide from an ”ideal” conductor, designating ẑ as the propa-
gation direction. We will express the fields in terms of B and E and assume that within the
wave guide the permittivity ε and permeablity µ parameters are isotropic and real. We will
assume that the fields take the form:

E = E(x, y)eikz−iωt and B = B(x, y)eikz−iωt (4)

inside the pipe, where now k and ε are assumed to be real. Assuming that there are no sources
inside the pipe, the fields there must satisfy Maxwell’s equations (8.16) which expand to the
following :

∂Bx

∂x
+

∂By

∂y
+ ikBz = 0. (5)

∂Ex

∂x
+

∂Ey

∂y
+ ikEz = 0. (6)



∂Ez

∂y
− ikEy = iωBx. (7)

ikEx −
∂Ez

∂x
= iωBy. (8)

∂Ey

∂x
− ∂Ex

∂y
= iωBz. (9)

∂Bz

∂y
− ikBy = −iµεωEx. (10)

ikBx −
∂Bz

∂x
= −iµεωEy. (11)

∂By

∂x
− ∂Bx

∂y
= −iµεωEz. (12)

Combining Faraday’s Law and Ampere’s Law, we find that each field component must satisfy
a two-dimensional Helmholz equation:(

∂2

∂x2
+

∂2

∂y2
− k2 + µεω2

)
Ex(x, y) = 0, (13)

with similar expressions for each of the other field components. For the rectangular wave
guide discussed in Section 8.4 of your text a solution for a TE mode can have:

Ez(x, y) ≡ 0 and Bz(x, y) = B0 cos
(

mπx

a

)
cos

(
nπy

b

)
, (14)

with k2 ≡ k2
mn = µεω2 −

[(
mπ
a

)2
+
(

nπ
b

)2
]
. From this result and Maxwell’s equations, we

can determine the other field components. For example Eqs. (7-8) simplify to

Bx = −k

ω
Ey and By =

k

ω
Ex. (15)

These results can be used in Eqs. (10-11) to solve for the fields Ex and Ey and Bx and By:

Ex =
ω

k
By =

−iω

k2 − µεω2

∂Bz

∂y
=

−iω[(
mπ
a

)2
+
(

nπ
b

)2
] nπ

b
B0 cos

(
mπx

a

)
sin

(
nπy

b

)
, (16)

and

Ey = −ω

k
Bx =

iω

k2 − µεω2

∂Bz

∂x
=

iω[(
mπ
a

)2
+
(

nπ
b

)2
]mπ

a
B0 sin

(
mπx

a

)
cos

(
nπy

b

)
. (17)

One can check this result to show that these results satisfy the boundary conditions. For
example, Etangential = 0 is satisfied since Ex(x, 0) = Ex(x, b) = 0 and Ey(0, y) = Ey(a, y) = 0.
This was made possible choosing ∇Bzcsurface·n̂ = 0, where n̂ denotes a unit normal vector
pointing out of the wave guide surface.


