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1 Numerical methods of solving Kohn-Sham equations for atoms

1.1 Units

The Schrödinger-like equations that must be solved take the form(
− ~2

2m
∇2 − Ze2

r
+ e2

∫
d3r′

ρ(r′)

|r− r′|
+ Vxc(r)

)
Ψα(r) = EαΨα(r), (1)

representing the kinetic energy, the electron-nuclear interaction (VN(r)), the Hartree electron-
electron interaction (VH(r)), and the exchange-correlation interaction (Vxc(r)) respectively. In
order to express the equations in convenient coordinates, it is convenient to express all distances in
units of bohr unit a

r = ua where a ≡ ~2

me2
, (2)

where u is a dimensionaless parameters. In practice, in order to simplify the notation in the pre-
sentation below, we will use r ↔ u. All energies will be expressed in units of the Rydberg unit
εRy

εα ≡ Eα/εRy where εRy ≡
e2

2a
=

~2

2ma2
. (3)

In these units and notation, the Schrödinger-like equations become(
−∇2 − 2Z

r
+ vH(r) + vxc(r)

)
Ψα(r) = εαΨα(r), (4)

where the dimensionaless Hartree potential is given by

vH(r) = VH(r)/εRy = 2

∫
d3r′

ρ(r′)

|r− r′|
. (5)

where vxc ≡ Vxc/εRy. We can now evaluate the Laplacian operator in spherical polar coordinates
and factor the wavefunction into radial and spherical harmonic components

Ψα(r) =
ψα(r)

r
Ylm(r̂). (6)

The equation satisfied by the radial function ψα(r) takes the form

d2ψα(r)

dr2
= A(r)ψα(r), (7)

where

A(r) ≡ l(l + 1)

r2
+

2Z

r
− vH(r)− vxc(r) + εα. (8)

This equation can be solved by various numerical methods. One of the better methods is described
below.
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1.2 The Numerov method of solving differential equations

One basic approach to developing accurate numerical approximations to the solution of these equa-
tions is to use a Taylor’s series expansion to relate the behavior of derivatives of your unknown
function f(r) to its values at neighboring points of r. Note that for any small distance h,

f(r ± h) = f(r)± h
df(r)

dr
+
h2

2!

d2f(r)

dr2
± h3

3!

d3f(r)

dr3
+
h4

4!

d4f(r)

dr4
. . . (9)

This means that if h is small, we can approximate the second derivative according to

d2f(r)

dr2
≈ f(r + h) + f(r − h)− 2f(r)

h2
+O(h4). (10)

By keeping the next even term in the Taylor series expansion, one can derive a Numerov algorithm
for this problem. In this case, a higher order approximation to the second derivative is given by

f(r + h)+f(r − h)− 2f(r) ≈

h2d
2f(r)

dr2
+
h2

12

(
d2f(r + h)

dr2
+
d2f(r − h)

dr2
− 2

d2f(r)

dr2

)
+O(h6).

(11)

The basic equation that defines the Numerov algorithm is as follows:(
f(r + h)− h2

12

d2f(r + h)

dr2

)
+

(
f(r − h)− h2

12

d2f(r − h)

dr2

)
− 2

(
f(r) +

5h2

12

d2f(r)

dr2

)
= 0.

(12)

This relation is useful for solving differential equations of the form

d2f(r)

dr2
= A(r)f(r) +B(r), (13)

where f(r) is an unknown function and A(r) and B(r) are presumed known.

For a linear radial grid of the form rn = r0 + nh, the Numerov recursion relation takes the form

S(r+h)f(r+h)+S(r−h)f(r−h)+T (r)f(r) =
h2

12
(B(r + h) +B(r − h) + 10B(r)) , (14)

where

S(r) ≡ 1− h2

12
A(r) and T (r) ≡ −2− 10h2

12
A(u). (15)

Alternatively, it is often convenient to solve these equations using a logarithmic grid of the form

r = r0
(
enh − 1

)
. (16)
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In this case, it is convenient to transform the differential equation with the independent variable
u ≡ nh to put the equations in a form equivalent to 13. In this case, we can define

f(r) ≡ r0e
u/2F (u). (17)

It can be shown that
d2f(r)

dr2
=

r0e
u/2

(r + r0)2

(
d2F (u)

du2
− 1

4
F (u)

)
. (18)

Therefore the equation for the Numerov algorithm is given by

d2F (u)

du2
=

(
(r + r0)

2A(u) +
1

4

)
F (u) +

(r + r0)
2

r0eu/2
B(u) ≡ Ã(u)F (u) + B̃(u). (19)

Once F (u) is determined, the solution f(r) is determined from Eq. (17). Depending on the
boundary conditions, the 3-point recursion formula of this algorithm Eq. (14) can be solved as a
stepping algorithm or by linear algebra techniques.

For solving the Kohn-Sham equations (Eq. (7)), B(r) ≡ 0 and A(r) is given by Eq. (8). In this
case, the behavior of the equations for r → 0 needs special attention:

lim
r→0

S(r)f(r) =


−h2

12
2ZC for l = 0

−h2

12
2C for l = 1

0 otherwise,

(20)

where C is a normalization constant.

For solving for the Hartree potential vH(r), rather than directly integrating the charge density

n(r) =
∑

α

wα
|ψ(r)α|2

4πr2
, (21)

it is more accurate to use the Numerov algorithm to solve

d2(rvH(r))

dr2
= −8πrn(r). (22)
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