Plan for Lecture 12 (Chapters 30):

Sources of Magnetic fields

1. “Permanent” magnets
2. Biot-Savart Law; magnetic fields from a current-carrying wire
3. Ampere’ Law
4. Magnetic fields in a solenoid

Remember to send in your chapter reading questions...

Review of magnetic forces:

$$\mathbf{F}_B = q\mathbf{v} \times \mathbf{B}$$

$$d\mathbf{F}_B = I
ds \times \mathbf{B}$$
Vector cross product

\[\hat{k} \times \hat{j} = \hat{i} \]
\[\hat{j} \times \hat{k} = \hat{i} \]
\[\hat{k} \times \hat{i} = \hat{j} \]
\[\hat{j} \times \hat{i} = -\hat{k} \]

Sources of magnetic fields \(B \)

Permanent magnet materials – Fe, Fe₂O₃, Co, Ni, alloys

Internal atomic level magnet dipole moments \(\mu \)

\[\Rightarrow \] Energy incentive for neighboring magnetic dipoles to align at temperatures below Curie temperature.

Visualization of intrinsic spin magnetic moment of electron.

\[B = 0 \]

In an unmagnetized substance, the atomic magnetic dipoles are randomly oriented.

\[B > 0 \]

When an external field \(B \) is applied, the magnetic moments, components of magnetic moment to line up in the same direction as \(B \) and increase the sample's net magnetization.

\[B \gg 0 \]

In the field's intense core, atoms align with the external field; become very magnetic.

“Permanent” magnets controlled by temperature and external magnetic fields.
Magnetic fields generated by moving charge:

Electrical field generated by charge distribution
\[
\mathbf{E}(r) = \sum \frac{Q}{4\pi \|r-r'\|} \mathbf{r}'
\]

Magnetic field generated by current distribution
\[
\mathbf{J}(r) = \sum \frac{Q v}{4\pi \|r-r'\|} \mathbf{r}'
\]

Biot-Savart Law:
Units: \(B \rightarrow T \) (Tesla) \(J \rightarrow I/\text{area} \rightarrow A/m^2 \)

Constant: \(\mu_0 \) “permeability” of free space \(4\pi \times 10^{-7} \ Tm/A \)
\[
\mathbf{B}(r) = \frac{\mu_0 I}{4\pi} \int \frac{\mathbf{J}(r') \times \mathbf{r} - \mathbf{r}' \, d^3r}{\|r-r'\|}
\]

For thin wire of constant current \(I \), where \(s \) denotes direction along wire:
\[
\mathbf{B}(r) = \frac{\mu_0 I}{4\pi} \int ds \times \frac{r-s}{\|r-s\|}
\]

Magnetic field produced by straight wire:
\[
B(r_p) = \frac{\mu_0 I}{2 \pi a} \int_{x_{\min}}^{x_{\max}} \frac{dx}{\left(a^2 + x^2\right)^{3/2}}
\]
\[
= \frac{\mu_0 I}{4 \pi a} \cos \theta \, d\theta \quad B(r_p) = \frac{\mu_0 I}{4 \pi a} \left(\sin \theta_2 - \sin \theta_1\right)
\]
Consider 2 (infinitely long) wires. Vote for the least incorrect answer:
A. The two wires cancel each other completely
B. The two wires generate exactly twice the magnet field compared to a single wire
C. The two wires attract each other.
D. The two wires repel each other.
\[F = \ell I \times B \]

\[\text{wires repel each other} \]

Magnetic field produced by wire loop:

\[B(r_{p}) = \hat{x} \frac{\mu_{0} I^{2} a}{4\pi} \frac{a^{2} d\theta}{(a^{2} + x^{2})^{3/2}} \]

\[= \hat{x} \frac{\mu_{0} I^{2} a}{4\pi} \frac{2\pi a^{2}}{2(a^{2} + x^{2})^{3/2}} = \hat{x} \frac{\mu_{0} I^{2} a}{2(a^{2} + x^{2})^{3/2}} \]

Easier way for situations with high symmetry

– Ampere’s Law

\[\oint B \cdot ds = \mu_{0} I_{in} \]

In this case

\[\oint B \cdot ds = 2\pi a B = \mu_{0} I \]

\[\Rightarrow B = \frac{\mu_{0} I}{2\pi a} \]
Example of Ampere’s law:
The figure below shows a wire coming out of the screen. Which of the paths for \(\int B \cdot ds \) has the smallest magnitude?

\[A. \ a \quad B. \ b \quad C. \ c \quad D. \ d \]

Magnetic field in a solenoid

Ideal solenoid

Magnetic field inside ideal solenoid:

Ampere’s Law:
\[\int B \cdot ds = \mu_0 I_n \]
\[\int B \cdot ds = B \ell = \mu_0 N I \]

\[B = \frac{\mu_0 N I}{\ell} \]
$B = \frac{\mu_0 NI}{\ell}$

Experimental MRI at FSU

http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/images/mri-scanner.jpg

$B = 21 \ T$

MRI signal – detects H nuclei using the magnetic moment of $H - \mu_H$.

$$E = -\mu_H \cdot B$$

Summary:

Ampere's law:

- Integral form: $\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{\text{ext}}$
- Differential form: $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$

Gauss's law:

- Integral form: $\oint \mathbf{E}(\mathbf{r}) \cdot d\mathbf{A} = \frac{\rho}{\varepsilon_0}$
- Differential form: $\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$
- Note:
 - $\oint \mathbf{B}(\mathbf{r}) \cdot d\mathbf{A} = 0$
 - $\nabla \cdot \mathbf{B} = 0$