PHY 114 A General Physics II
11 AM-12:15 PM TR Olin 101

Plan for Lecture 15 (Chapter 33):
Alternating current circuits

1. AC EMF
2. R, C, L behaviors in AC circuit
3. RLC circuits

Remember to send in your chapter reading questions...

3rd exam will be scheduled for evenings during the week of 4/2/2012

Homework hint:

In the circuit of Figure P32.48, the battery is 12 V, the resistance is 10 \Omega, and the capacitance is 1 \mu F. The switch is closed for a long time, and no voltage is measured across the capacitor. After the switch is opened, the potential difference across the capacitor reaches a maximum value of 120 V. What is the value of the inductance?

The switch is closed for a long time, and no voltage is measured across the capacitor. Which of the following statements is false?

A. The voltage across the inductor and the capacitor must always be the same.
B. After a long time the current through the inductor is E/R.
C. After a long time the current through the resistor is E/R.
D. After a long time, the current through the inductor is 0.
Homework hint:

In the circuit of Figure P32.40, the battery voltage E is 60 V, the resistance R is 20 ohms, and the capacitance C is 500 μF. The switch S is closed for a long time, and no voltage is measured across the capacitor. After the switch is opened, the potential difference across the capacitor reaches a maximum value of 120 V. What is the value of the inductance L?

After the switch S is opened ($t=0$), which of the following statements are true?

A. The circuit is now an LC circuit with the initial condition that $Q(t=0)=CE$.
B. The circuit is now an LC circuit with the initial condition that $I(t=0)=E/R$.
C. The current will oscillate forever with an angular frequency of $\omega = 1/\sqrt{LC}$.

DC - LRC circuit:

$$\frac{E - Q}{C} - L \frac{dI}{dt} - RI = 0$$

$$L \frac{d^2Q}{dt^2} + R \frac{dQ}{dt} + \frac{1}{C}Q - E = 0$$

Solution assuming $Q(t=0) = 0$:

$$Q(t) = CE \left(1 - e^{\frac{t}{2}} \cos(\omega t)\right)$$

$$\omega = \frac{1}{\sqrt{LC}}$$

AC EMF source

$$E(t) = \Delta V(t) = \Delta V_{\text{max}} \sin(\omega t) = \Delta V_{\text{max}} \sin(2\pi ft)$$
AC EMF source

\[\mathcal{E}(t) \equiv \Delta v(t) = \Delta V_{\text{max}} \sin(\omega t) = \Delta V_{\text{max}} \sin(2\pi ft) \]

\[\langle \Delta v(t) \rangle = \frac{1}{f} \Delta V_{\text{max}} \sin(2\pi ft) dt = 0 \]

\[\langle \Delta v(t) \rangle^2 = \left(\frac{1}{f} \int \Delta V_{\text{max}} \sin(2\pi ft) dt \right)^2 = \frac{1}{2} \left(\int \Delta V_{\text{max}} \sin(2\pi ft) \right)^2 = \left(\Delta V_{\text{rms}} \right)^2 \]

In US the standard wall voltage is \(\Delta V_{\text{rms}} = 120 \text{ V} \) with \(f = 60 \text{ Hz} \)

In Europe the standard wall voltage is \(\Delta V_{\text{rms}} = 220 \text{ V} \) with \(f = 50 \text{ Hz} \)

Voltage standards throughout the world:

http://users.telenet.be/worldstandards/electricity.htm#voltage

DC - LRC circuit:

AC - LRC circuit:
Which of the following statements most accurately reflect the relationships between the behaviors of LRC circuits with a DC versus an AC EMF source.

A. The differential equations are different and the solutions are different.
B. The differential equations are the same – but the solutions are different.
C. The differential equations are the same – so the solutions have to be the same.

In fact: The DC solutions to the differential equations are generally valid representations of transient behaviors. Often we are interested in the “steady state” solutions in the presence of AC voltage sources.

AC EMF with resistor:

\[
\Delta v - RI = 0
\]

\[
\Delta V_{\text{max}} \sin(\omega t) - RI(t) = 0
\]

\[
I(t) = \frac{\Delta V_{\text{max}}}{R} \sin(\omega t)
\]

AC EMF with capacitor:

\[
\Delta v - \frac{Q}{C} = 0
\]

\[
\Delta V_{\text{max}} \sin(\omega t) - \frac{Q(t)}{C} = 0
\]

\[
Q(t) = C\Delta V_{\text{max}} \sin(\omega t)
\]

\[
I(t) = \frac{dQ(t)}{dt} = \omega C\Delta V_{\text{max}} \cos(\omega t)
\]
AC EMF with inductor:

\[\Delta v - L \frac{dI}{dt} = 0 \]

\[\Delta V_{\text{max}} \sin(\omega t) - L \frac{dI(t)}{dt} = 0 \]

\[\Rightarrow \frac{dI(t)}{dt} = \frac{\Delta V_{\text{max}}}{L} \sin(\omega t) \]

\[\Rightarrow I(t) = -\frac{\Delta V_{\text{max}}}{\omega L} \cos(\omega t) \]

Summary of results for each circuit element:

General AC EMF of the form:

\[\Delta v(t) = \Delta V_{\text{max}} \sin(\omega t - \phi) \]

With resistor only: \[I(t) = \frac{\Delta V_{\text{max}}}{R} \sin(\omega t - \phi) \]

With capacitor only: \[I(t) = \omega C \Delta V_{\text{max}} \cos(\omega t - \phi) \]

With inductor only: \[I(t) = -\frac{\Delta V_{\text{max}}}{\omega L} \cos(\omega t - \phi) \]

Comment about phase factor \(\phi \):

Plots of \(\sin(2\pi t + \phi) \)

\(\phi = 0 \)

\(\phi = 0.5 \)

\(\phi = 1.57 \)
Series AC LRC circuit

\[E - \frac{Q}{C} - L \frac{dI}{dt} - RI = 0 \]
\[E = \Delta V_{\text{max}} \sin(\omega t) \]
Assume solution \(I(t) \)
to have the form:
\[I(t) = I_{\text{max}} \sin(\omega t - \phi) \]
Declare success if:
- \(I(t) \) satisfies differential equations
- \(I_{\text{max}} \) has a consistent value
- \(\phi \) has a consistent value

\[\Delta V_{\text{max}} \sin(\omega t) - \frac{Q}{C} - L \frac{dI}{dt} - RI = 0 \]
Assuming:
\[I(t) = I_{\text{max}} \sin(\omega t - \phi) \]
\[\Delta V_{\text{max}} \sin(\omega t) + \frac{I_{\text{max}}}{\omega C} \cos(\omega t - \phi) - \omega I_{\text{max}} \cos(\omega t - \phi) \]
\[- RI_{\text{max}} \sin(\omega t - \phi) = 0 \]

\(\Rightarrow \) Must be true at all \(t \); special values of \(I_{\text{max}} \) and \(\phi \)

\[\Delta V_{\text{max}} \sin(\omega t) - I_{\text{max}} \left[\frac{1}{\omega C} + \omega L \right] \cos(\omega t - \phi) + R \sin(\omega t - \phi) \]
\[\Delta V_{\text{max}} \sin(\omega t) - I_{\text{max}} \left[(-X_C + X_L) \cos(\omega t - \phi) + R \sin(\omega t - \phi) \right] = 0 \]

Some trig identities (see pg. A - 12 of your text)
\[\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
\[A \cos \beta + B \sin \beta = \sqrt{A^2 + B^2} \sin(\alpha + \beta) \]
if \(\sin \alpha = \frac{A}{\sqrt{A^2 + B^2}} \) and \(\cos \alpha = \frac{B}{\sqrt{A^2 + B^2}} \)
\[\Delta V_{\text{max}} \sin(\omega t) - I_{\text{max}} \left[\left(-X_C + X_L \right) \cos(\omega t - \phi) + R \sin(\omega t - \phi) \right] = 0 \]
\[\Delta V_{\text{max}} \sin(\omega t) - I_{\text{max}} \sqrt{\left(-X_C + X_L \right)^2 + R^2} \]
\[= \frac{\left(-X_C + X_L \right) \cos(\omega t - \phi) + R \sin(\omega t - \phi)}{\sqrt{\left(-X_C + X_L \right)^2 + R^2}} = 0 \]

Let \(Z = \sqrt{\left(-X_C + X_L \right)^2 + R^2} \)
\[\sin \alpha = \frac{-X_C + X_L}{Z} \]
\[\cos \alpha = \frac{R}{Z} \]
\[\Delta V_{\text{max}} \sin(\omega t) - I_{\text{max}} Z \left[\sin \alpha \cos(\omega t - \phi) + \cos \alpha \sin(\omega t - \phi) \right] = 0 \]
\[\Delta V_{\text{max}} \sin(\omega t) - I_{\text{max}} Z [\sin(\omega t - \phi)] = 0 \]
\[\Rightarrow \phi = \alpha \]
\[\Rightarrow \tan \phi = \frac{X_L - X_C}{R} \]
\[\Rightarrow I_{\text{max}} = \frac{\Delta V_{\text{max}}}{Z} \]

Series AC LRC circuit

\[\Delta V_{\text{max}} \sin(\omega t) - \frac{Q}{C} L \frac{dI}{dt} - RJ = 0 \]

Assuming : \(I(t) = I_{\text{max}} \sin(\omega t - \phi) \)
\[X_L = \omega L \]
\[X_C = \frac{1}{\omega C} \]
\[Z = \sqrt{\left(X_C - X_L \right)^2 + R^2} \]
\[\tan \phi = \frac{X_L - X_C}{R} \]
\[I_{\text{max}} = \frac{\Delta V_{\text{max}}}{Z} \]

Example AC LRC circuit:

Consider the series resistor \(R \) and inductor \(L \) connected to an AC EMF. The voltage amplitude \(V_{\text{max}} \) is held fixed while the frequency \(\omega \) is varied. The bulb is brightest when:
A. \(\omega \) is highest
B. \(\omega \) is lowest
C. Bulb brightness is independent of \(\omega \)
Example AC LRC circuit:

Consider the series resistor R and capacitor C connected to an AC EMF. The voltage amplitude V_{max} is held fixed while the frequency ω is varied. The bulb is brightest when:
A. ω is highest
B. ω is lowest
C. Bulb brightness is independent of ω

Power in an AC circuit

$$P = I \Delta v = I_{\text{max}} \sin(\alpha t - \phi) \Delta V_{\text{max}} \sin(\alpha t)$$

$$= \left(\frac{\Delta V_{\text{max}}}{Z}\right)^2 \sin(\alpha t - \phi) \sin(\alpha t)$$

$$= \left(\frac{\Delta V_{\text{max}}}{Z}\right)^2 \left(\sin^2(\alpha t) \cos \phi - \cos(\alpha t) \sin(\alpha t) \sin \phi\right)$$

$$\langle P \rangle_{\text{avg}} = \frac{1}{2} \left(\frac{\Delta V_{\text{max}}}{Z}\right)^2 \cos \phi$$

Note:

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2(\alpha t) dt = \frac{1}{2}$$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(\alpha t) \cos(\alpha t) dt = 0$$
Power in an AC circuit -- continued

\[\langle P \rangle_{\text{avg}} = \frac{1}{2} \left(\frac{\Delta V_{\text{rms}}}{Z} \right)^2 \cos \phi \]

Recall:
\[Z = \sqrt{(X_L - X_C)^2 + R^2} \]
\[\cos \phi = \frac{R}{Z} \]

\[\Rightarrow \langle P \rangle_{\text{avg}} = \frac{1}{2} \left(\frac{\Delta V_{\text{rms}}}{Z} \right)^2 \cdot \frac{R}{2} \]

Frequency dependence of impedance in AC circuit

For pure LC circuit, we found a resonance frequency

\[\omega_0 = \frac{1}{\sqrt{LC}} \]

\[Z = \sqrt{(X_L - X_C)^2 + R^2} = \sqrt{\left(\omega \cdot \frac{1}{\omega_0} \right)^2 + R^2} \]

\[Z = \frac{1}{\sqrt{\omega^2 L^2 \left(1 - \frac{\omega^2}{\omega_0^2} \right)^2 + R^2}} \]

\[\langle P \rangle_{\text{avg}} = \frac{1}{2} \left(\frac{\Delta V_{\text{rms}}}{Z} \right)^2 \cdot \frac{R}{\sqrt{\omega^2 L^2 \left(1 - \frac{\omega^2}{\omega_0^2} \right)^2 + R^2}} \]
AC transformer devices:

An alternating voltage \(\Delta v_1 \) is applied to the primary coil, and the output voltage \(\Delta v_2 \) is across the resistor of resistance \(R_2 \).

Faraday's law for \(\Delta v_1 \):
\[
\Delta v_1 = -N_1 \frac{d\Phi_B}{dt}
\]
Faraday's law for \(\Delta v_2 \):
\[
\Delta v_2 = -N_2 \frac{d\Phi_B}{dt}
\]

To a good approximation,
\[
\frac{d\Phi_B}{dt} \text{ is the same for 1 and 2 :}
\]
\[
\Rightarrow \Delta v_2 = \frac{N_2}{N_1} \Delta v_1
\]

AC transformer example:
\[
\Delta v_1 = \frac{N_2}{N_1} \Delta v_1
\]

Both \(\Delta v_1 \) and \(\Delta v_2 \) are oscillating in time; applying the equality to the RMS amplitudes, we can determine \(N_2 / N_1 \) need for
\[
\frac{V_{\text{rms}2}}{V_{\text{rms}1}} = \frac{12}{120}
\]
\[
N_2 / N_1 = \frac{1}{10}
\]

If \(\Delta v_1 \) were a DC voltage source:
A. The transformer would work in the same way.
B. The transformer would not work at all.