PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

Plan for Lecture 16 (Chapter 33):

Electromagnetic Waves

1.Maxwell's equations (with help from Coulomb, Ampere, Faraday, Gauss ...)

2.Solutions to Maxwell's equations and their significance.

Remember to send in your chapter reading questions...

10	02/23/2012	Review	<u>26.1-28.5</u>	(Review for exam)	
	02/28/2012	Exam			
11	03/01/2012	Magnetic fields	<u>29.1-29.6</u>	29.5.29.12.29.47	03/06/2012
12	03/06/2012	Magnetic field sources	<u>30.1-30.6</u>	<u>30.5,30.21,30.29</u>	03/08/2012
13	03/08/2012	Faraday's law	<u>31.1-31.5</u>	<u>31.12.31.23.31.40</u>	03/20/2012
	03/13/2012	No class (Spring Break)			
	03/15/2012	No class (Spring Break)			
14	03/20/2012	Induction and AC circuits	<u>32.1-32.6</u>	32.4.32.20.32.43	03/22/2012
15	03/22/2012	AC circuits	<u>33.1-33.9</u>	<u>33.8,33.24,33.71</u>	03/27/2012
16	03/27/2012	Electromagnetic waves	<u>34.1-34.3</u>	<u>34.3.34.10.34.13</u>	03/29/2012
17	03/29/2012	Electromagnetic waves	<u>34.4-34.7</u>	34.22.34.46.34.57	04/03/2012
18	04/03/2012	Ray optics Evening exam	35.1-35.8		
19	04/05/2012	Image formation Evening exam	36.1-36.4		
20	04/40/0040	1 6 8	20.5.20.40		

3rd exam will be scheduled for evenings during the week of 4/2/2012

Preferred times:

- A. 5-7 PM
- B. 6-8 PM
- C. 7-9 PM
- D. 8-10 PM

Preferred evenings:

- A. Monday 4/2
- B. Tuesday 4/3
- C. Wednesday 4/4
- D. Thursday 4/5

Comment on AC circuits:

$$\mathcal{E} - RI_1 - L\frac{dI_2}{dt} = 0$$

$$-L\frac{dI_2}{dt} + \frac{Q_3}{C} = 0$$

$$I_1 = I_2 + I_3$$

Solution method:

- Transform differential equation in to algebraic equation using trig or complex functions
- 2. "Solve" algebra problem
- 3. Analyze for physical solution

Homework hint:

Which components have the largest Z at high frequency?

A. R_1 and C B. R_2 and L

Which components have the largest Z at low frequency?

A. R_1 and C B. R_2 and L

3/27/2012

Summary of electric and magnetic equations known before ~1860: Gauss's laws :

Integral form :
$$\oint \mathbf{E}(\mathbf{r}) \cdot d\mathbf{A} = \frac{Q_{in}}{\varepsilon_0}$$

Differential form : $\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$

Integral form : $\oint \mathbf{B}(\mathbf{r}) \cdot d\mathbf{A} = 0$ Differential form : $\nabla \cdot \mathbf{B} = 0$

Faraday's law :

Ampere's law :

Integral form :

$$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{in}$$

Differential form : $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$

$$\int \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s} = -\frac{d}{dt} \quad \int \mathbf{B}(r) \cdot d\mathbf{A}$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Couples E and B fields

- 1. Function of several variables and their derivatives
- 2. Vector functions
- 3. Derivatives of vector functions

- 1. Function of several variables and their derivatives
- 2. Vector functions
- 3. Derivatives of vector functions

Other examples of partial derivatives :

 $f(x,t) = A\sin(k(x-ct)) \qquad A,k,c \text{ constants}$ $\frac{\partial f(x,t)}{\partial t} \equiv \left(\frac{\partial f(x,t)}{\partial t}\right)_{x} = -Akc\cos(k(x-ct))$ $\frac{\partial f(x,t)}{\partial x} \equiv \left(\frac{\partial f(x,t)}{\partial x}\right)_{t} = Ak\cos(k(x-ct))$

- 1. Function of several variables and their derivatives
- 2. Vector functions
- 3. Derivatives of vector functions

Vector in 3 - dimensions

 $\mathbf{V} = V_x \mathbf{\hat{i}} + V_y \mathbf{\hat{j}} + V_z \mathbf{\hat{k}}$

Vector function $\Rightarrow V_x = V_x(x, y, z, t)$ $V_y = V_y(x, y, z, t)$ $V_z = V_z(x, y, z, t)$

- 1. Function of several variables and their derivatives
- 2. Vector functions
- 3. Derivatives of vector functions

$$\mathbf{V} = V_x \hat{\mathbf{i}} + V_y \hat{\mathbf{j}} + V_z \hat{\mathbf{k}} = V_x (x, y, z, t) \hat{\mathbf{i}} + V_y (x, y, z, t) \hat{\mathbf{j}} + V_z (x, y, z, t) \hat{\mathbf{k}}$$
$$\frac{\partial \mathbf{V}}{\partial t} = \frac{\partial V_x (x, y, z, t)}{\partial t} \hat{\mathbf{i}} + \frac{\partial V_y (x, y, z, t)}{\partial t} \hat{\mathbf{j}} + \frac{\partial V_z (x, y, z, t)}{\partial t} \hat{\mathbf{k}}$$
$$\frac{\partial \mathbf{V}}{\partial x} = \frac{\partial V_x (x, y, z, t)}{\partial x} \hat{\mathbf{i}} + \frac{\partial V_y (x, y, z, t)}{\partial x} \hat{\mathbf{j}} + \frac{\partial V_z (x, y, z, t)}{\partial x} \hat{\mathbf{j}} + \frac{\partial V_z (x, y, z, t)}{\partial x} \hat{\mathbf{k}}$$

Common notation for spatial derivatives :

$$\nabla \equiv \frac{\partial}{\partial x}\hat{\mathbf{i}} + \frac{\partial}{\partial y}\hat{\mathbf{j}} + \frac{\partial}{\partial z}\hat{\mathbf{k}}$$

- Function of several variables and their derivatives 1.
- 2. Vector functions
- Derivatives of vector functions 3.

$$\nabla \equiv \frac{\partial}{\partial x}\hat{\mathbf{i}} + \frac{\partial}{\partial x}\hat{\mathbf{j}} + \frac{\partial}{\partial x}\hat{\mathbf{k}}$$

Gradient :

$$\nabla f(x, y, z, t) \equiv \frac{\partial f(x, y, z, t)}{\partial x} \hat{\mathbf{i}} + \frac{\partial f(x, y, z, t)}{\partial y} \hat{\mathbf{j}} + \frac{\partial f(x, y, z, t)}{\partial z} \hat{\mathbf{k}}$$

Divergence:

$$\nabla \cdot \mathbf{V} \equiv \frac{\partial V_x(x, y, z, t)}{\partial x} + \frac{\partial V_y(x, y, z, t)}{\partial y} + \frac{\partial V_z(x, y, z, t)}{\partial z}$$

Curl:

$$\nabla \times \mathbf{V} = \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z}\right) \mathbf{\hat{i}} + \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}\right) \mathbf{\hat{j}} + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right) \mathbf{\hat{k}}$$

3/27/2012

Phi 114 A Spring 2012 -- Lecture 16

Additional comments Integral $\bigstar \Rightarrow$ differential form of Gauss's law $\oint \mathbf{V}(\mathbf{r}) \cdot d\mathbf{A} \Leftrightarrow \nabla \cdot \mathbf{V}$ X x contribution to surface integral: $d\mathbf{A} = dy \, dz \, \hat{\mathbf{i}}$ $\int \mathbf{V} \cdot d\mathbf{A} \Big|_{\mathbf{T}} = \left(V_x(x + dx, y, z) - V_x(x, y, z) \right) dy dz$

 $=\frac{\partial V_x(x, y, z)}{\partial x}dx\,dy\,dz$

PHY 114 A Spring 2012 -- Lecture 16

Incomplete set of equations:

 \sim

$\oint \mathbf{E}(\mathbf{r}) \cdot d\mathbf{A} = \frac{Q_{in}}{\varepsilon_0}$	$\nabla \cdot \mathbf{E} = \frac{\rho}{2}$
$\oint \mathbf{B}(\mathbf{r}) \cdot d\mathbf{A} = 0$	\mathcal{E}_0 $\nabla \cdot \mathbf{B} = 0$
$\int \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s} = -\frac{d}{dt} \int \mathbf{B}(r) \cdot d\mathbf{A}$	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{in}$	$\nabla \times \mathbf{B} = \boldsymbol{\mu}_0 \mathbf{J}$

A changing magnetic flux produces an electric field – can a changing electric flux produce a magnetic field?

What happens to fields between capacitor plates with time varying charge?

Slight problem with Ampere's law applied in the vicinity of a capacitor:

$$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \int \mathbf{J} \cdot d\mathbf{S}_1$$
Path P

$$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \int \mathbf{J} \cdot d\mathbf{S}_1$$
Final Solution Current I in the wire passes only through S₁, which leads to a contradiction in Ampère's law that is resolved only if one postulates a displacement current through S₂.

Slight problem with Ampere's law applied in the vicinity of a capacitor:

$$d\mathbf{s} = \mu_0 \int \mathbf{J} \cdot d\mathbf{S}_1$$

$$Path P$$

$$\mathbf{f} \mathbf{B} \cdot d\mathbf{s} = \mu_0 \varepsilon_0 \frac{d}{dt} \int \mathbf{E} \cdot d\mathbf{S}_2$$
From Gauss's law
$$\mathbf{f}$$

The conduction current I in the wire passes only through S_1 , which leads to a contradiction in Ampère's law that is resolved only if one postulates a displacement current through S_2 .

$$\mathbf{E} \cdot d\mathbf{S}_2 = \frac{q}{\varepsilon_0}$$

More details about Ampere-Maxwell equation:

Full Maxwell's equations

$\oint \mathbf{E}(\mathbf{r}) \cdot d\mathbf{A} = \frac{Q_{in}}{\varepsilon_0}$	$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$
$\oint \mathbf{B}(\mathbf{r}) \cdot d\mathbf{A} = 0$	$\nabla \cdot \mathbf{B} = 0$
$\int \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s} = -\frac{d}{dt} \int \mathbf{B}(r) \cdot d\mathbf{A}$	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{in} + \mu_0 \varepsilon_0 \frac{d}{dt} \int \mathbf{E}(r) \cdot d\mathbf{A}$	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

Why are Maxwell's equations important?

- A. They are not really physicist are weird
- B. They are used to torture PHY 114 students
- C. They summarize all of electricity and magnetism presently known.
- D. They explain the nature of light

Full Maxwell's equations

$\oint \mathbf{E}(\mathbf{r}) \cdot d\mathbf{A} = \frac{Q_{in}}{\varepsilon_0}$	$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$
$\oint \mathbf{B}(\mathbf{r}) \cdot d\mathbf{A} = 0$	$\nabla \cdot \mathbf{B} = 0$
$\int \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s} = -\frac{d}{dt} \int \mathbf{B}(r) \cdot d\mathbf{A}$	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{in} + \mu_0 \varepsilon_0 \frac{d}{dt} \int \mathbf{E}(r) \cdot d\mathbf{A}$	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

Some conclusions:

- 1. Without sources, there are no **E** or **B** fields
- 2. E and B can exist far from the sources

Maxwell's equations without sources

$\oint \mathbf{E}(\mathbf{r}) \cdot d\mathbf{A} = 0$	$\nabla \cdot \mathbf{E} = 0$
$\oint \mathbf{B}(\mathbf{r}) \cdot d\mathbf{A} = 0$	$\nabla \cdot \mathbf{B} = 0$
$\int \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s} = -\frac{d}{dt} \int \mathbf{B}(\mathbf{r}) \cdot d\mathbf{A}$	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \varepsilon_0 \frac{d}{dt} \int \mathbf{E}(r) \cdot d\mathbf{A}$	$\nabla \times \mathbf{B} = \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

Far from the charge and current sources the **E** and **B** fields

- A. Always get smaller with increasing distance
- B. Always get smaller at long times
- C. Can maintain a steady amplitude at all times and distances

$$\frac{\partial^{2} E_{y}}{\partial x^{2}} = \mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{y}}{\partial t^{2}}$$

$$y \quad \frac{\partial^{2} B_{z}}{\partial x^{2}} = \mu_{0} \varepsilon_{0} \frac{\partial^{2} B_{z}}{\partial t^{2}}$$

$$\mu_{0} \varepsilon_{0} = (4\pi \times 10^{-7} \,\mathrm{Tm/A})(8.854 \times 10^{-12} \,\mathrm{C}^{2}/\mathrm{Nm}^{2})$$

$$= \frac{1}{(3 \times 10^{8} \,\mathrm{m/s})^{2}} \equiv \frac{1}{c^{2}}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}$$

$$\overrightarrow{\mathbf{E}}$$

$$\overrightarrow{\mathbf{E}$$

$$\overrightarrow{\mathbf{$$

zĺ

The wave equation

$$\frac{\partial^2 E_y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2} \qquad \qquad \frac{\partial^2 B_z}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 B_z}{\partial t^2}$$

Solution form :

$$E_{y} = E_{y}(x,t) = E_{\max} \cos(k(x-ct))$$
$$B_{z} = B_{z}(x,t) = B_{\max} \cos(k(x-ct))$$

$$kc = \omega$$

$$k = \frac{2\pi}{\lambda} \qquad \omega = 2\pi f \qquad B_{\max} = \frac{E_{\max}}{c}$$
$$c = \lambda f$$

С

$$E_{y} = E_{y}(x,t) = E_{\max} \cos(k(x-ct))$$
$$B_{z} = B_{z}(x,t) = \frac{E_{\max}}{c} \cos(k(x-ct))$$

What good are electromagnetic plane waves?

- A. They are good for nothing.
- B. They are idealizations that physics students never see.
- C. They come from outer space.
- D. An example is in this room.

Which of the following states comparing sound waves to electromagnetic waves are **false**?

- A. They both satisfy the wave equation
- B. For both, the wave speed c is related to frequency and wavelength according to $c=\lambda f$.
- C. They both travel through a medium.
- D. The Doppler effect for sound waves is different in electromagnetic waves and in sound waves.

Astronomers think that they have detected radiation from a star 15x10⁹ light years away.

 $d = 15 \times 10^9 \cdot 3 \times 10^8 \, m \, / \, s \cdot 365.25 \cdot 24 \cdot 3600 = 1.4 \times 10^{26} \, m$