PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

Plan for Lecture 19 (Chapter 36): Optical properties of light 1. Mirror reflections 2. Images in flat and spherical mirrors

13	3 03/08/2012	Faraday's law	31.1-31.5	31.12.31.23.31.40	03/20/2012
	00/00/2012		<u></u>	01.12.01.20.01.40	00/20/2012
	03/13/2012	No class (Spring Break)			
	03/15/2012	No class (Spring Break)			
14	4 03/20/2012	Induction and AC circuits	<u>32.1-32.6</u>	<u>32.4.32.20.32.43</u>	03/22/2012
1:	5 03/22/2012	AC circuits	<u>33.1-33.9</u>	<u>33.8,33.24,33.71</u>	03/27/2012
10	6 03/27/2012	Electromagnetic waves	<u>34.1-34.3</u>	<u>34.3.34.10.34.13</u>	03/29/2012
17	03/29/2012	Electromagnetic waves	<u>34.4-34.7</u>	34.22.34.46.34.57	04/03/2012
18	3 04/03/2012	Ray optics Evening exam	<u>35.1-35.8</u>	<u>35.20,35.27,35.35</u>	04/10/2012
19	04/05/2012	Image formation Evening exam	<u>36.1-36.4</u>	<u>36.8,36.31,36.42</u>	04/10/2012
20	0 04/10/2012	Image formation	36.5-36.10	36.52,36.54,36.64	04/12/2012
21	04/12/2012	Wave interference	37.1-37.6		
2	2 04/17/2012	Diffraction	38.1-38.6		
23	3 04/19/2012	Quantum Physics	40.1-42.10		

Additional comments:

For this solution, the **y** direction is called the **polarization** direction (the E field orientation)

This is a periodic wave, where $k=2\pi/\lambda$ and λ represents the wavelength and the frequency of the wave is $kc/n=\omega=2\pi f$.

Index of refraction n:

In vacuum:

In medium :

 $arepsilon_0$ μ_0

General case - reflection and refraction

For $\theta_1 = 0 = \theta_2$ $\frac{E_2}{E_0} = \frac{2n_1}{n_2 + n_1}$

$$\frac{E_{1R}}{E_0} = \frac{n_2 - n_1}{n_2 + n_1}$$

For E polarized in scattering plane

$$\frac{E_2}{E_0} = \frac{2n_1n_2\cos\theta_1}{n_2^2\cos\theta_1 + n_1n_2\cos\theta_2}$$
$$\frac{E_{1R}}{E_0} = \frac{n_2^2\cos\theta_1 - n_1n_2\cos\theta_2}{n_2^2\cos\theta_1 + n_1n_2\cos\theta_2}$$

For E polarized out of scattering plane

$$\frac{E_2}{E_0} = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$
$$\frac{E_{1R}}{E_0} = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

If
$$n_2 \to \infty$$
, then :

$$\frac{E_2 / E_0}{E_0} \to 0 \text{ and } \frac{E_{1R} / E_0}{E_0} \to 1$$

PHY 114 A Spring 2012 -- Lecture 19

6

Notation for image position:

Images formed from reflected light:

Analysis of mirror image

Mirror symmetry:

Using geometry:

$$i = p$$
 $h = h'$

Terminology:

Virtual image -- perceived image but no light can be detected at the location of the virtual image

Real image - - light can detected at the location of the real image

Summary of geometric optics of plane mirror

Analysis of image from plane mirror

Some details: By convention, *i < 0* for virtual image

Why does this satellitedish look like a concave mirror?

- A. Because it is.
- B. It doesn't not shiny enough.

Where is the receiveplaced relative to theradius of curvature R?A. Placed at R.B. Placed at R/2.

Image formed in concave mirror:

Image formed by concave mirror:

General result for virtual image formed by concave mirror

p < f

image is upright and increased in size

When the object is located between the focal point and a concave mirror surface, the image is virtual, upright, and enlarged.

Image formed by concave mirror:

When the object is located so that the center of curvature lies between the object and a concave mirror surface, the image is real, inverted, and reduced in size.

Image formed by concave mirror:

General result for real image formed by concave mirror

p > f

image is upside down

Is image always reduced in size?

(A) yes (B) no

Convex mirror

Image formed by convex mirror:

 $\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$ $M = \frac{h'}{h} = \frac{-i}{p}$

General result for virtual image formed by convex mirror:

image is upright and decreased in size

Can the image formed by a convex mirror ever be *increased* in size (|M|>1)? (A) yes (B) no

Is it possible to form a real image with a convex mirror?

(A) yes (B) no

Convex mirror used for surveillance:

http://www.physicsclassroom.com/class/refln/u13l4a.cfm

Suppose that you were behind the steering wheel and saw this image in your rear-view mirror. Which of these is likely to be true?

- A. The truck is closer to you than it appears.
- B. The truck is further from you than it appears.
- C. Don't change lanes just in case.