PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

Plan for Lecture 2:

1. Review of Coulomb's law
2. Introduction to the notion of Electric Fields
3. Electric Fields for various charge configurations
\rightarrow PHY 114 Labs started Monday Jan. $23^{\text {rd }}$ and run through the week of April $16^{\text {th }}$.
\rightarrow PHY 114 Tutorial sessions in Olin 103

Sunday
Monday
Tuesday
Wednesday
Thursday

5:30-7:30 PM Jie Liu
5:30-7:30 PM Jie Liu
6:00-8:00 PM Loah Stevens
5:30-7:30 PM Jie Liu
5:30-7:30 PM Loah Stevens

Recap -- Coulomb's Law

$$
\mathbf{F}_{12}=k_{e} \frac{q_{1} q_{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|^{2}} \hat{\mathbf{r}}_{12}
$$

Force on particle 2 due to particle 1 :

When the charges are of the same sign, the force is repulsive.

When the charges are of opposite
signs, the force is attractive.
b

Example from last lecture:

Consider the configuration of 4 charges at the 4 corners of a square shown in the diagram. What is the direction of the force on the charge +Q in the right corner?

Another example:

$$
\begin{aligned}
\mathbf{F}_{3} & =\mathbf{F}_{13}+\mathbf{F}_{23} \\
& =\frac{k_{e} q_{1} q_{3}}{(\sqrt{2} a)^{2}} \hat{\mathbf{r}}_{13}+\frac{k_{e} q_{2} q_{3}}{a^{2}} \hat{\mathbf{r}}_{23}
\end{aligned}
$$

$\frac{\mathbf{F}_{3}}{q_{3}} \equiv \mathbf{E}_{3}=\frac{k_{e} q_{1}}{(\sqrt{2} a)^{2}} \hat{\mathbf{r}}_{13}+\frac{k_{e} q_{2}}{a^{2}} \hat{\mathbf{r}}_{23}$

Electric field:

- An electric field $\mathbf{E}(\mathbf{r})$ is the Coulomb's law force at the position r on a positive charge of $q=1$ Coulomb due to all other sources.
- The electric force on a point charge q at the position r is

$$
\mathbf{F}(\mathbf{r})=q \mathbf{E}(\mathbf{r})
$$

i-clicker exercise
 equilateral triangle. Choose the point A, B, C, D, E which has the largest total electric field strength.

D
i-clicker exercise equilateral triangle. Choose the point A, B, C, D, E which has the smallest total electric field strength.

D

Electric field due to 2 point charges:

Electric field due to many charges

$$
\mathbf{E}(\mathbf{r})=k_{e} \sum_{i} \frac{q_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|^{2}} \widehat{\mathbf{r}-\mathbf{r}_{i}}
$$

For a continuous distribution of charge :

$$
\begin{aligned}
\mathbf{E}(\mathbf{r}=0) & =k_{e} \lim _{\Delta q \rightarrow 0} \sum_{i} \frac{\Delta q_{i}}{\mathbf{r}_{i}^{2}} \hat{\mathbf{r}}_{i} \\
& =k_{e} \int \frac{d q_{\hat{2}}}{r^{2}} \mathbf{r}
\end{aligned}
$$

\rightarrow In general this integral is very difficult; Gauss's law
 makes it easier to evaluate.

Example - consider a long thin uniformly charged rod:

i-clicker exercise

Consider a large flat plate of area A made of a material which has a uniformly distributed positive charge $q=\sigma A$. Which vector A, B, C, or D represents the direction of the electric field a small distance above the center of the plate?

i-clicker exercise

Consider a large flat plate of area A made of a material which has a uniformly distributed positive charge $q=\sigma A$. This question concerns the electric field strength E measured at a distance x from the center of the plate ($x \ll$ radius of plate).
A. $E \propto 1 / x^{2}$
B. $E \propto 1 / x$
C. $\mathrm{E} \propto 1$

Electric field generated by a ring of charge

Electric field generated by a ring of charge

b

$$
d q=\frac{Q}{2 \pi a} a d \phi
$$

$$
d E_{x}=\frac{k_{e} d q}{x^{2}+a^{2}} \frac{x}{\sqrt{x^{2}+a^{2}}}
$$

$$
\begin{aligned}
E_{x} & =\int d E_{x}=\frac{k_{e} x}{\left(x^{2}+a^{2}\right)^{3 / 2}} \int d q \\
& =\frac{k_{e} Q x}{\left(x^{2}+a^{2}\right)^{3 / 2}}
\end{aligned}
$$

Electric field generated by a plate of charge

i-clicker question
What is the magnitude and direction (+ \rightarrow up, $-\rightarrow$ down) of the electric field between oppositely charged plates?

$$
\begin{aligned}
& \text { A. } 0 \\
& \text { B. }+\sigma / 2 \varepsilon_{0} \\
& \text { C. }-\sigma / 2 \varepsilon_{0} \\
& \text { D. }+\sigma / \varepsilon_{0} \\
& \text { E. }-\sigma / \varepsilon_{0}
\end{aligned}
$$

E O

Summary

$$
\begin{aligned}
& \mathbf{F}(\mathbf{r})=q \mathbf{E}(\mathbf{r}) \\
& \mathbf{E}(\mathbf{r})=k_{e} \sum_{i} \frac{q_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|^{2}} \widehat{\mathbf{r}-\mathbf{r}_{i}}=k_{e} \int \frac{d q\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}} \widehat{\mathbf{r}^{-}-\mathbf{r}^{\prime}}
\end{aligned}
$$

$$
E_{x}^{\text {plate }} \approx 2 \pi k_{e} \sigma \equiv \frac{\sigma}{2 \varepsilon_{0}}
$$

Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let $q=2.20 \mu \mathrm{C}$, and $L=$ 0.850 m). Calculate the total electric force on the 7.00- $\mu \mathrm{C}$ charge.
magnitude
direction N° (counterclockwise from the $+x$ axis)

Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let $q=2.20 \mu \mathrm{C}$, and $L=$ 0.850 m). Calculate the total electric force on the $7.00-\mu \mathrm{C}$ charge.

Some of your questions:
$>$ How to understand and handle continuous charge distributions

- At the a microscopic (classical) viewpoint elementary charges are discrete; at a macroscopic viewpoint it is often convenient to consider a distribution of charges.

Volume charges: $d q=\frac{Q}{V} d^{3} r$
Surface charges: $d q=\frac{Q}{A} d^{2} r$
Line charges: $\quad d q=\frac{Q}{L} d r$

Some of your questions:

$>$ Some questions about field lines

Two field lines leave $+2 q$ for every one that terminates on $-q$.

Questions about usefulness of electric fields outside of physics class.

Example: ipad touch screen (from HowThingsWork web page)

- Self capacitance: Circuitry monitors changes in an array of electrodes.
- Mutual capacitance: A layer of driving lines carries current. A separate layer of sensing lines detects changes in the electrical charge when you place your finger on the screen.

Regardless of which method the screen uses, you change the electrical properties of the screen every time you touch it. The iPod records this change as data, and it uses mathematical algorithms to translate the data into an understanding of where your fingers are. In the next section, we'll explore what the iPod touch does with this data and how to navigate through its features.

