PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

Plan for Lecture 21 (Chapter 37):

Wave properties of light

- 1. Interference of two electromagnetic waves
- 2. Interference of electromagnetic waves in thin films

4/12/201

PHY 114 A Spring 2012 - Lecture 21

\vdash		-			
14	03/20/2012	Induction and AC circuits	32.1-32.6	32 4.32 20.32 43	03/22/2012
15	03/22/2012	AC circuits	33.1-33.9	33.8.33.24.33.71	03/27/2012
16	03/27/2012	Electromagnetic waves	34.1-34.3	34.3.34.10.34.13	03/29/2012
17	03/29/2012	Electromagnetic waves	34.4-34.7	34.22.34.46.34.57	04/03/2012
18	04/03/2012	Ray optics Evening exam	35.1-35.8	35 20 35 27 35 35	04/10/2012
19	04/05/2012	Image formation Evening exam	36.1-36.4	36.8.36.31.36.42	04/10/2012
20	04/10/2012	Image formation	36.5-36.10	36.52.36.54.36.64	04/12/2012
21	04/12/2012	Wave interference	37.1-37.6	37.2.37.19.37.29	04/17/2012
22	04/17/2012	Diffraction	38.1-38.6		
23	04/19/2012	Quantum Physics	40.1-42.10		
24	04/24/2012	Molecules and solids	43.1-43.8		
25	04/26/2012	Nuclear reactions	45.1-45.4		
26	05/01/2012	Nuclear radiation	45.5-45.7		
	05/08/2012	Final exam 9 AM			

 4^{th} exam will be offered during the week of April $23^{\text{rd}}.$

4/12/2012

PHY 114 A Spring 2012 -- Lecture 21

Upcoming event:

Society of Physics Students Keynote address Friday April 20, 2012 8 PM in Brendle recital Hall

Professor William Phillips from NIST and UMD

"Time, Einstein, and the Coolest Stuff in the Universe"

Dr. Phillips was awarded the 1997 Nobel Prize in Physics: "for development of methods to cool and trap atoms with laser light" The 1997 prize was shared with Steven Chu of Stanford University and Claude Cohen-Tannoudji of the Ecole Normale Superieure, Parisa Spring 2012 – Lecture 21

 3^{rd} exam solutions

- Solutions posted on web
- Exam review session??

Would you like to attend an exam review session?

(A) yes (B) no

If you would like a review session, can you meet

- (A) Today at 2 PM (here)
- (B) Tomorrow at 1 PM Olin 107
- (C) Tomorrow at 2 PM Olin 107
- (D) Other?
- Similar problems may appear on final exam

4/12/2012

PHY 114 A Spring 2012 -- Lecture 21

Comment about functions and derivatives:

Current as a function of time (in units of Amps):

$$I(t) = 0.2(1 - 0.01t)$$

$$\frac{dI}{dt} = -0.002$$

Charge as a function of time:

$$q(t) = q_0 e^{-t/\tau}$$

$$\frac{dq}{dt} = -\frac{q_0 e^{-t/\tau}}{\tau}$$

4/12/2012

PHY 114 A Spring 2012 - Lecture 21

Webassign hint: 3. •08.333 points Two converging lenses having focal lengths of $f_1 = 12.5$ cm and $f_2 = 18.0$ cm are placed a distance d = 49.0 cm apart as shown in the figure below. The image due to light passing through both lenses is to be located between the lenses at the position x = 32.0 cm indicated. Object Object Final image position (a) At what value of p should the object be positioned to the left of the first lens? X \(\bigcit{pi 18.1} \) cm (b) What is the magnification of the final image? X \(\bigcit{pi 18.3} \) cm (b) What is the magnification of the final image?

Wave phenomena associated with light

Plane polarized electromagnetic wave at an instant of time:

Superposition of two electromagnetic waves (electric field portion)

$$E_y^{tot}(x,t) = E_y^1(x,t) + E_y^2(x,t)$$

$$\begin{split} E_{y}^{tot}(x,t) &= E_{\max} \sin \left(\frac{2\pi}{\lambda} (x - vt) \right) + E_{\max} \sin \left(\frac{2\pi}{\lambda} (x - vt) + \varphi \right) \\ &= 2E_{\max} \sin \left(\frac{2\pi}{\lambda} (x - vt) + \frac{1}{2} \varphi \right) \cos \left(\frac{\varphi}{2} \right) \end{split}$$

Superposition (continued)

$$\begin{split} E_{y}^{\text{tot}}(x,t) &= E_{\text{max}} \sin \left(\frac{2\pi}{\lambda} (x - vt) \right) + E_{\text{max}} \sin \left(\frac{2\pi}{\lambda} (x - vt) + \varphi \right) \\ &= 2E_{\text{max}} \sin \left(\frac{2\pi}{\lambda} (x - vt) + \frac{1}{2} \varphi \right) \cos \left(\frac{\varphi}{2} \right) \end{split}$$

Note that this result follows from the trigonometric identity:

$$\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

Squared magnitude: $|\sin(A) + \sin(B)|^2 = 4\sin^2\left(\frac{A+B}{2}\right)\cos^2\left(\frac{A-B}{2}\right)$

Intensity of the EM waves:

$$I^1 \equiv S_{avg} = \frac{1}{2c\mu_0} \big| E_{\rm max} \big|^2 = I^2$$

Time average = 1/2

$$I^{tot} = \frac{4}{2c\mu_0} \left| E_{\text{max}} \cos \left(\frac{\varphi}{2} \right) \right|^2 = 4I^1 \cos^2 \left(\frac{\varphi}{2} \right)$$
PHY 114 A Spring 2012 - Lecture 21

Summary of interference phenomena due to two or more electromagnetic waves which combine at a give point P with path lengths r_1 and r_2 and fixed frequency f.

$$E(P,t) = E_{\text{max}} \sin\left(\frac{2\pi r_1}{\lambda} - 2\pi f t\right) \pm E_{\text{max}} \sin\left(\frac{2\pi r_2}{\lambda} - 2\pi f t\right)$$

Trig identity:

 $\sin A + \sin B = 2\sin\left(\frac{1}{2}(A+B)\right)\cos\left(\frac{1}{2}(A-B)\right) \Rightarrow I = 4I_{\max}\left\{\cos\left(\frac{1}{2}(A-B)\right)\right\}^{2}$

 $\sin A - \sin B = 2\cos(\frac{1}{2}(A+B))\sin(\frac{1}{2}(A-B)) \Rightarrow I = 4I_{\max}\{\sin(\frac{1}{2}(A-B))\}^2$

2/2012 PHY 114 A Spring 2012 -- Lecture 21

Two examples of superposed radiation:

Interference from refraction and reflection of thin films

Young's double slit

4/12/2012

PHY 114 A Spring 2012 -- Lecture 21

Suppose you see a rainbow pattern for oil on a pavement. What is the the approximate thickness of the oil in the red (λ =700nm) region. Assume that n_{oir} =1.4.	
$2n_{oil}t = (m + \frac{1}{2})\lambda$	 _

 $t = \frac{(m + \frac{1}{2})\lambda}{2n_{oil}} = \frac{(m + \frac{1}{2})700 \text{ nm}}{2 \cdot 1.4} = 125 \text{ nm}, 375 \text{ nm}, \text{ etc.}$

PHY 114 A Spring 2012 -- Lecture 21

Example:

4/12/2012

10