PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

Plan for Lecture 23 (Chapter 40-42):

Some topics in Quantum Theory

1. Particle behaviors of electromagnetic waves
2. Wave behaviors of particles
3. Quantized energies

13	03/08/2012	Faraday's law	$\underline{31.1-31.5}$	31.12.31.23.31.40	03/20/2012
	03/13/2012	No class (Spring Break)			
	03/15/2012	No class (Spring Break)			
14	03/20/2012	Induction and AC circuits	32.1-32.6	32.4.32.20.32.43	03/22/2012
15	03/22/2012	AC circuits	33.1-33.9	33.8.33.24.33.71	03/27/2012
16	03/27/2012	Electromagnetic waves	34.1-34.3	34.3.34.10.34.13	03/29/2012
17	03/29/2012	Electromagnetic waves	34.4-34.7	34.22.34.46.34.57	04/03/2012
18	04/03/2012	Ray optics Evening exam	35.1-35.8	35.20.35.27.35.35	04/10/2012
19	04/05/2012	Image formation Evening exam	36.1-36.4	36.8.36.31.36.42	04/10/2012
20	04/10/2012	Image formation	36.5-36.10	36.52.36.54.36.64	04/12/2012
21	04/12/2012	Wave interference	37.1-37.6	37.2.37.19.37.29	04/17/2012
22	04/17/2012	Diffraction	38.1-38.6	38.24.38.30.38.37	04/19/2012
23	04/19/2012	Quantum Physics	40.1-42.10	40.41.41.12.42.10	04/24/2012
24	04/24/2012	Molecules and solids Evening exam	43.1-43.8	43.2.43.40.43.43	05/01/2012
25	04/26/2012	Nuclear reactions Evening exam	45.1-45.4	45.6.45.20.45.30	05/01/2012
26	05/01/2012	Nuclear radiation	45.5-45.7		
	05/08/2012	Final exam 9 AM			

Time, Einstein, and the Coolest Stuff in the Universe

A free public lecture by Nobel Laureate

Dr. William Phillips

National Institute of Standards and Technology
8:00 PM Friday, April 20
$\xrightarrow[\text { Wake Forest University }]{\text { Brendle Recital Hall }}$

Part of SPS zone 5 conference April 20-21, 2012

Offer 1 point extra credit for attendance*
*After the lecture, email me that you attended. In the following email exchange you will be asked to answer one question about the lecture.

Webassign hint:

The hydrogen spectrum includes a red line at 656 nm and a blue-violet line at 434 nm . What are the angular separations between these two spectral lines for all visible orders obtained with a diffraction grating that has 4160 grooves/cm? (In this problem assume that the light is incident normally on the gratings.)
first order separation \square 。
second order separation \square
third order separation \square

$d \sin \theta=m \lambda$

For $N=4160$ grooves/cm, $d=\frac{1}{N}$

Webassign hint:

4. $\quad+-/ 0.333$ points
```
Potassium iodide (KI) has the same crystalline structure as NaCl , with atomic planes separated by 0.353 nm . A monochromatic \(x\)-ray beam shows a first-order diffraction maximum when the grazing angle is \(7.50^{\circ}\). Calculate the x -ray wavelength. (Assume first order.)


\section*{If you have not already done so - please reply to my email concerning your intentions regarding Exam 4.}

The material you have learned up to now in PHY 113 \& 114 was known in 1900 and is basically still true. Some details (such as at high energy, short times, etc. ) have been modified with Einstein's theory of relativity, and with the development of quantum theory.

Which of the following technologies do not need quantum mechanics.
A. X-ray diffraction
B. Neutron diffraction
C. Electron microscope
D. MRI (Magnetic Resonance Imaging)
E. Lasers

Which of the following technologies do not need quantum mechanics.
A. Scanning tunneling microscopy
B. Atomic force microscopy
C. Data storage devices
D. Microwave ovens
E. LED lighting

Image of Si atoms on a nearly perfect surface at \(\mathrm{T}=7 \mathrm{~K}\).


Image made using atomic force microscopy.


From Physical Review Letters March 20, 2000 -- Volume 84, Issue 12, pp. 2642-2645

Quantum physics -
>Electromagnetic waves sometimes behave like particles
\(\rightarrow\) one "photon" has a quantum of energy \(\mathrm{E}=h f\)

\section*{momentum \(\mathrm{p}=h / \lambda=h f / c\)}
>Particles sometimes behave like waves
\(\rightarrow\) "wavelength" of particle related to momentum:
\[
\lambda=h / p
\]
\(\rightarrow\) quantum particles can "tunnel" to places classically "forbidden"
\(\rightarrow\) Stationary quantum states have quantized energies

Classical physics
Wave equation for electric field in Maxwell's equations (plane wave boundary conditions):
\[
\frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=c^{2} \frac{\partial^{2} \mathbf{E}}{\partial x^{2}} \quad \text { for example }: \mathbf{E}(x, t)=E_{\max } \hat{\mathbf{j}} \sin (k(x-c t))
\]

Equation for particle trajectory \(r(t)\) in conservative potential \(U(r)\) and total energy \(E\)
\[
\frac{1}{2} m\left(\frac{d \mathbf{r}}{d t}\right)^{2}+U(\mathbf{r})=E
\]
for example: \(\quad \mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0} t-\frac{1}{2} g \hat{\mathbf{k}} t^{2}\)

Particle \(\leftarrow \rightarrow\) wave properties in classical physics
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Particle properties } & \multicolumn{1}{c|}{ Wave properties } \\
\hline \begin{tabular}{l} 
Position as a function of \\
time is known -- \(\mathbf{r}(\mathrm{t})\)
\end{tabular} & \begin{tabular}{l} 
Phonomenon is spread out \\
over many positions at an \\
instant of time.
\end{tabular} \\
\begin{tabular}{l} 
Particle is spatially \\
confined when E \(\leq \mathrm{U}(\mathrm{r})\).
\end{tabular} & \begin{tabular}{l} 
Notion of spatial \\
confinement non-trivial.
\end{tabular} \\
Particles are independent. & Interference effects. \\
\hline
\end{tabular}

Mathematical representation of particle and wave behaviors.
Consider a superposition of periodic waves at \(t=0\) :
\[
E(x, t)=\sum_{i} E_{\max } \sin \left(k_{i} x\right)
\]

\[
[E(x, 0)]^{2}=\left(\sum_{i} E_{\max } \sin \left(k_{i} x\right)\right)^{2}
\]

\(\Delta \mathrm{x}\) smaller \(\rightarrow\) more particle like
\(\Delta \mathrm{k}\) smaller \(\rightarrow\) more wave like
\(\Delta x \Delta k \approx 2 \pi \quad \rightarrow\) Heisenberg's uncertainty principle De Broglie's particle moment - wavelength relation:
\[
p=\frac{h}{\lambda}=\frac{h / 2 \pi}{\lambda / 2 \pi}=\hbar k
\]

Heisenberg's hypotheses: \(\Delta x \Delta p \geq \frac{\hbar}{2}\)
\[
\Delta t \Delta E \geq \frac{\hbar}{2}
\]
\[
h=6.6 \times 10^{-34} \mathrm{Js}=4.14 \times 10^{-15} \mathrm{eVs}
\]

Wave equations
Electromagnetic waves:
\[
\frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=c^{2} \frac{\partial^{2} \mathbf{E}}{\partial x^{2}}
\]

Matter waves: (Schrödinger equation)
\[
-i \hbar \frac{\partial}{\partial t} \Psi(x, t)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)\right] \Psi(x, t)
\]

\section*{Comparison of different wave equations}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Electromagnetic waves } & \multicolumn{1}{c|}{ Matter waves } \\
\hline Vector \(-\mathbf{E}\) or \(\mathbf{B}\) fields & Scalar - probability amplitude \\
Second order \(t\) dependence & First order \(t\) dependence \\
Examples: & Examples: \\
\(E_{y}(x, t)=E_{\max } \sin (k x-\omega t)\) & \(\Psi(x, t)=\Psi_{0} \sin (k x) e^{-i E t / \hbar}\) \\
\(B_{z}(x, t)=\frac{E_{\max }}{c} \sin (k x-\omega t)\) & \(\Psi(r, t)=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}} e^{-i E_{0} t / \hbar}\) \\
& \(E_{0}=-\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\) \\
\hline
\end{tabular}

What is the meaning of the matter wave function \(\Psi(x, t)\) ?
\(>\Psi(x, t)\) is not directly measurable
\(>|\Psi(x, t)|^{2}\) is measurable - represents the density of particles at position \(x\) at time \(t\).
\(>\) For a single particle system - represents the probability of measuring particle at position \(x\) at time \(t\).
\(>\) For many systems of interest, the twave function can be written in the form \(\Psi(x, t)=\psi(x) e^{-i E t /}\)
\[
|\Psi(x, t)|^{2}=|\psi(x)|^{2}
\]
\[
\left.\int_{-\infty}^{\infty} \Psi(x, t)\right)^{2} d x=1
\]

Wave-like properties of particles
Louis de Broglie suggested that a wavelength could be associated with a particle's momentum
\[
p=\frac{h}{\lambda} \Rightarrow-i \frac{h}{2 \pi} \frac{\partial}{\partial x} \equiv-i \hbar \frac{\partial}{\partial x}
\]
"Wave" equation for particles - Schrödinger equation
\[
\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)\right] \Psi(x, t)=-i \frac{h}{2 \pi} \frac{\partial}{\partial t} \Psi(x, t)
\]

Stationary - state wavefunctions: \(\quad \Psi(\mathbf{r}, t)=\psi(\mathbf{r}) e^{-i E t / \hbar}\)
\[
\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)\right] \Psi(x, t)=E \Psi(x, t)
\]

Example-- free particle-- \(U(r)=0: \quad \Psi(\mathbf{r}, t)=\psi(\mathbf{r}) e^{-i E t / \hbar}\)
\(\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\right] \Psi(x, t)=E \Psi(x, t)\)
\[
\begin{aligned}
& \Psi(x, t)=\Psi_{0} \sin (k x) e^{-i E t \hbar} \\
& E=\frac{\hbar^{2} k^{2}}{2 m}
\end{aligned}
\]
\[
k=\frac{2 \pi}{\lambda} \Rightarrow \lambda=\frac{h}{\sqrt{2 m E}} \text { or } E=\frac{h^{2}}{2 m \lambda^{2}}
\]

Example: Suppose we want to create a beam of electrons ( \(m=9.1 \times 10^{-31} \mathrm{~kg}\) ) for diffraction with \(\lambda=1 \times 10^{-10} \mathrm{~m}\). What is the energy \(E\) of the beam?
\(E=\frac{h^{2}}{2 m \lambda^{2}}=\frac{\left(6.6 \times 10^{-34} \mathrm{~J}\right)^{2}}{2 \cdot 9.1 \times 10^{-31} \mathrm{~kg} \cdot\left(10^{-10} \mathrm{~m}\right)^{2}}=2.4 \times 10^{-17} \mathrm{~J}=150 \mathrm{eV}\)

Electron microscope


\section*{Typically E=120,000200,000 eV for high resolution EM}

Electrons in an infinite box:

\[
\begin{aligned}
& E \psi(x)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\right] \psi(x) \text { for } 0 \leq x \leq L \\
& \psi(x)=\psi_{0} \sin \left(\frac{n \pi x}{L}\right) \quad n=1,2,3 \cdots \quad E_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m}
\end{aligned}
\]

\section*{Electrons in a finite box:}


Why would it be interesting to study electrons in a finite box?
A. It isn't
B. It is the mathematically most simple example of quantum system
C. Quantum well systems can be manufactured to design new devices

\section*{Tunneling of electrons through a barrier}

surface region
tip
vacuum

How a scanning tunneling microscope works:


Visualization of \(|\psi(x)|^{2}\)
A surface if a nearly perfect Si crystal


Physical Review Letters -- March 20, 2000 -- Volume 84, Issue 12, pp. 2642-2645

The physics of atoms -
Features are described by solutions to the matter wave equation - Schrödinger equation:
"reduced" mass of electron
and proton \(\begin{aligned} & \text { Stationary - state wavefunctions: } \quad \Psi(\mathbf{r}, t)=\psi(\mathbf{r}) e^{-i E t / \hbar}\end{aligned}\)
Solutions: \(E_{n}=-\frac{Z^{2} e^{2}}{8 \pi \varepsilon_{0} a_{0}} \frac{1}{n^{2}}=-13.6 \frac{Z^{2}}{n^{2}} \mathrm{eV}\)
\[
a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m e^{2}}=0.0529 \mathrm{~nm}
\]

Form of probability density for ground state ( \(n=1\) )



\section*{Angular degrees of freedom}
-- since the force between the electron and nucleus depends only on distance and not on angle, angular momentum \(\mathbf{L} \equiv \mathbf{r x p}\) is conserved. Quantum numbers associated with angular momentum:
\[
\begin{array}{ll}
\mathbf{L}^{2}=\hbar^{2} \ell(\ell+1) & \ell=0,1,2, \ldots .(n-1) \\
L_{z}=\hbar m & -\ell \leq m \leq \ell \text { total of } 2 \ell+1 \text { states }
\end{array}
\]

Notation: \(\quad \ell=0 \Rightarrow s, \quad 1 \Rightarrow p, \quad 2 \Rightarrow d\)





Summary of results for H -atom:
\[
E_{n}=-13.6 \frac{Z^{2}}{n^{2}} \mathrm{eV}
\]


Balmer series spectra

\title{
degeneracy associated with each \(n: 2 n^{2}\)
}
\[
\text { _ } n=1
\]

Atomic states of atoms throughout periodic table:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 1 \\
& \mathrm{H}
\end{aligned}
\] & & & & & & & & & & & & & & & & & & \[
\begin{array}{|l}
2 \\
\mathrm{He}
\end{array}
\] \\
\hline 3 & 4 & & & & & & & & & & & & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline Li & Be & & & & & & & & & & & & B & C & N & O & F & Ne \\
\hline 11 & 12 & & & & & & & & & & & & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline Na & Mg & & & & & & & & & & & & Al & Si & P & S & Cl & Ar \\
\hline 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 3 & & 31 & 32 & 33 & 34 & 35 & 36 \\
\hline K & Ca & Sc & Ti & V & Cr & Mn & Fe & Co & Ni & Cu & Z & & Ga & Ge & As & Se & As & Kr \\
\hline 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 4 & & 49 & 50 & 51 & 52 & 53 & 54 \\
\hline Rb & Sr & Y & Zr & Nb & Mo & Tc & Ru & Rh & Pd & Ag & & & In & Sn & Sb & Te & I & Xe \\
\hline 55 & 56 & 57 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 8 & & 81 & 82 & 83 & 84 & 85 & 86 \\
\hline Cs & Ba & La & Hf & Ta & W & Re & Os & Ir & Pt & Al & H & & Tl & Pb & Bi & Po & At & Rn \\
\hline 87 & 88 & 89 & & & & & & & & & & & & & & & & \\
\hline Fr & Ra & Ac & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\[
E \psi(\mathbf{r})=[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial \mathbf{r}^{2}}+\underbrace{U(\mathbf{r})}] \psi(\mathbf{r}) \quad \begin{gathered}
\text { effective potential for an } \\
\text { electron in atom }
\end{gathered}
\]

Example: \(\mathrm{Cu}(Z=29) 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}\)


Radial density for Cu
```

