PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

Plan for Lecture 4:

- 1. Introduction to the electric potential
- 2.Relationship between the electric potential and the electric field

1/31/2012

PHY 114 A Spring 2012 -- Lecture 4

Announcements: Topic Problem Assignments 1 01/19/2012 Coulomb's law 23.1-23.4 23.6,23.8a,23.13 01/24/2012 01/24/2012 Electric field 23.22,23.20,23.61a 01/26/2012 3 01/26/2012 Gauss's Law 24.1-24.3 24.22a,24.23,24.40 01/31/2012 Electric potential <u>25.1-25.4</u> <u>25.12,25.23,25.34,25.01</u> 02/02/2012 02/02/2012 Electric potential 25.5-25.8 (Review for exam) 02/07/2012 Exam 1/31/2012 PHY 114 A Spring 2012 -- Lecture 4

i-clicker question

Would you attend a review session for next

- Tuesday's exam on

 A. Monday afternoon at 4 PM
- B. Monday evening at 5 PM
- C. Sunday afternoon at 3 PM
- D. Sunday evening at 5 PM
- E. None of these

1/31/2012

PHY 114 A Spring 2012 -- Lecture 4

i-clicker registration problems:

- Campbell, Thane
- Dearmon, Jake
- Klebous, SandySamsel, David
- Story, William

PHY 114 A Spring 2012 -- Lecture 4

Application of work principles to Coulomb's law force

$$\mathbf{F}(\mathbf{r}) = \frac{k_e q Q}{|\mathbf{r} - \mathbf{r}_Q|^2} \frac{\mathbf{r} - \mathbf{r}_Q}{|\mathbf{r} - \mathbf{r}_Q|}$$

$$W = \int_{\mathbf{r}_{eq} \to \infty}^{\mathbf{r}} \mathbf{F}(\mathbf{r}') \cdot d\mathbf{r}' = -\frac{k_e q Q}{|\mathbf{r} - \mathbf{r}_Q|} = -(U(\mathbf{r}) - U_{\infty})$$

1/31/2012

PHY 114 A Spring 2012 -- Lecture 3

Potential energy due to Coulomb's law with charges q and Q:

$$U(\mathbf{r}) = \frac{k_e qQ}{|\mathbf{r} - \mathbf{r}_Q|} \quad \text{(joules)}$$

Electric potential due to charge Q:

$$V(\mathbf{r}) = \frac{k_e Q}{|\mathbf{r} - \mathbf{r}_o|}$$
 (joules/C = Volt)

Electric potential due to many charges Q_i :

$$V(\mathbf{r}) = \sum_{i} \frac{k_{e}Q_{i}}{|\mathbf{r} - \mathbf{r}_{Q_{i}}|}$$

1/31/2012

PHY 114 A Spring 2012 -- Lecture 4

The potential energy of the pair of charges is given by $k_rq_1q_2/r_{12}$.

A potential k_rq_2/r_{12} exists at point P due to charge q_2 . q_1 $V = k_r \frac{q_2}{r_{12}}$ D

1/31/2012

PHY 114 A Spring 2012—Lecture 4

12

Calculation of the electrostatic potential at points A,B,C,D:

$$V_A = \frac{k_e Q}{d} + \frac{2k_e Q}{\sqrt{2}d}$$

$$V_B = \frac{2k_e Q}{d} + \frac{k_e Q}{\sqrt{2}d}$$

$$V_C = \frac{k_e Q}{d / \sqrt{2}} + \frac{2k_e Q}{d / \sqrt{2}} = \frac{3\sqrt{2}k_e Q}{d}$$

$$V_{D} = \frac{k_{e}Q}{d/2} + \frac{2k_{e}Q}{d/2} = \frac{6k_{e}Q}{d}$$

1/21/2012

PHY 114 A Spring 2012 -- Lecture 4

Relationships between electric potential and electric field:

E has units N/C

V has units J/C=Volt

$$V(\mathbf{r}) = -\int_{\mathbf{r}}^{\mathbf{r}} \mathbf{E}(\mathbf{r}') \cdot d\mathbf{r}'$$

$$\mathbf{E}(\mathbf{r}) = -\nabla V(\mathbf{r}) = -\hat{\mathbf{i}}\frac{\partial V(\mathbf{r})}{\partial x} - \hat{\mathbf{j}}\frac{\partial V(\mathbf{r})}{\partial y} - \hat{\mathbf{k}}\frac{\partial V(\mathbf{r})}{\partial z}$$

Aside - - connection to Gauss's Law

$$\nabla \cdot \mathbf{E} = \frac{\rho(\mathbf{r})}{\varepsilon_0}$$

$$\mathbf{E}(\mathbf{r}) = -\nabla V(\mathbf{r}) \Rightarrow \nabla^2 V(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\varepsilon_0}$$

1/31/2012

PHY 114 A Spring 2012 -- Lecture 4

Electric potential for constant electric field:

Uses for accelerated charges:

 In an X-ray machine, electrons are accelerated before hitting a Cu or Mo target that produce X-ray radiation.

Note: An electron accelerated through a potential difference of 10V will have $K_f = 10 \text{eV} = 1.6 \times 10^{-18} \quad \text{J} \qquad v_f = 2 \times 10^6 \text{ m/s}$

- Electron beam microscopy (almost atomic resolution)
- Accelerated electrons moving in a circle generate synchrotron radiation

1/31/2012

PHY 114 A Spring 2012 -- Lecture 4

Electric potential for constant electric field:

Suppose a molecule with positive and negative parts is placed in the field E as show.

- A. It will move to the right
- B. It will move to the left
- C. It will not move
- D. It will rotate

 $V_i = 0$

 $V_f = -\frac{\sigma d}{\sigma}$

1/31/2012

 \mathcal{E}_{0} PHY 114 A Spring 2012 – Lecture 4