PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

Plan for Lecture 7 (Chapter 27):

1. Electrical currents

Voltage and resistance Electrical power

	2	01/24/2012	Electric field	<u>23.4-23.7</u>	23.22.23.20.23.61a	01/26/2012
[3	01/26/2012	Gauss's Law	24.1-24.3	24.22a,24.23,24.40	01/31/2012
[4	01/31/2012	Electric potential	25.1-25.4	25.12.25.23.25.34.25.01	02/02/2012
[5	02/02/2012	Electric potential	25.5-25.8	(Review for exam)	
		02/07/2012	Exam			
	6	02/09/2012	Capacitance and dielectrics	<u>26.1-26.7</u>	26.4.26.13.26.30	02/14/2012
	7	02/14/2012	Current and resistance	<u>27.1-27.6</u>	27.3.27.12.27.29	02/16/2012
[8	02/16/2012	Direct current circuits	<u>28.1-28.2</u>	<u>28.3.28.7.28.19</u>	02/21/2012
[9	02/21/2012	Direct current circuits	<u>28.3-28.5</u>	28.23,28.25,28.34	02/23/2012
[10	02/23/2012	Review	<u>26.1-28.5</u>	(Review for exam)	
		02/28/2012	Exam			
[11	03/01/2012	Magnetic fields	<u>29.1-29.6</u>	<u>29.5,29.12,29.47</u>	03/06/2012
	12	03/06/2012	Magnetic field sources	30.1-30.6		
[13	03/08/2012	Faraday's law	31.1-31.5		
		03/13/2012	No class (Spring Break)			

Remember to send in your chapter reading questions...

		03/15/2012	ivo ciass (Spring Break)	
	14	03/20/2012	Induction and AC circuits	32.1-32.6
	15	03/22/2012	AC circuits	33.1-33.9
	16	03/27/2012	Electromagnetic waves	34.1-34.3
	17	03/29/2012	Electromagnetic waves	34.4-34.7
	18	04/03/2012	Ray optics	35.1-35.8
Evening exams	19	04/05/2012	Image formation	36.1-36.4
#3 and #4 $-$	20	04/10/2012	Image formation	36.5-36.10
	21	04/12/2012	Wave interference	37.1-37.6
	22	04/17/2012	Diffraction	38.1-38.6
	23	04/19/2012	Quantum Physics	40.1-42.10
	24	04/24/2012	Molecules and solids	43.1-43.8
	25	04/26/2012	Nuclear reactions	45.1-45.4
	26	05/01/2012	Nuclear radiation	45.5-45.7
		05/08/2012	Final exam 9 AM	

Grading:

It is likely that your grade for the course will be determined by the following factors:

4 exams*	45%
Final exam	25%
Problems sets**	15%
Laboratory work***	10%
Quiz****	5%

All students must take 3 exams. In order to relieve exam stress, the lowest exam score will be weighted 5% while the other two exams will be weighted 20%. If a student elects to take all 4 exams, the lowest of the 4 exams will be dropped.

PHY 114 General Physics II -- Section A

TR 11 AM-12:15 PM OPL 101 http://www.wfu.edu/~natalie/s12phy114/

Instructor: Natalie Holzwarth Phone:758-5510 Office: 300 OPL e-mail: natalie@wfu.edu

Tutorial sessions in Olin 103

- General information
- Syllabus and homework assignments
- Lecture Notes
- For registered students

- Sundays 5:30-7:30 PM -- Jie Liu
- Mondays 6:00-8:00 PM -- Jie Liu
- Tuesdays 6:00-8:00 PM -- Loah Stevens
- Wednesdays 5:30-7:30 PM -- Jie Liu
- Thursdays 5:30-7:30 PM -- Loah Stevens

i-clicker:

- A. Would attend a review of Exam 1 at 5 PM today (Tuesday)
- B. Would attend a review of Exam 1 at 5:15 PM Wednesday.

Up to now, we have been considering equilibrium configurations of charges -- electrostatics. Now we will consider steady-state motions of charges.

Electrical current

È

Representation of drift velocity of negative charge carrier in some material.

> Why would this be a suitable model of the motion of a charge within an electric field?

> Suppose you have an electron – charge q=-e and mass m_e initially at rest in the presence of electric field E. What is the velocity at time t:

Model to describe drift velocity

Newton's law:
$$m_e \frac{dv}{dt} = -eE - \frac{m_e v}{\tau}$$

term representing
collisions on a time
scale of τ
Under steady - state conditions: $\left\langle m_e \frac{dv}{dt} \right\rangle = 0 = -eE - \left\langle \frac{m_e v}{\tau} \right\rangle$
 $\Rightarrow \left\langle v(t \to \infty) \right\rangle \equiv v_d = \frac{-eE\tau}{m_e}$
Corresponding current: $I = n(-e)v_d A$
 $I = \frac{ne^2\tau}{m_e} AE$

TABLE 27.2

Resistivities and Temperature Coefficients

of Resistivity for	Various	Ma	terial	5
5 25				

Material	ρ Resistivityª (Ω · m)	Temperature Coefficient ^b α[(°C) ⁻¹]
Silver	1.59×10^{-8}	3.8×10^{-3}
Copper	1.7×10^{-8}	3.9×10^{-3}
Gold	2.44×10^{-8}	$3.4 imes 10^{-3}$
Aluminum	2.82×10^{-8}	3.9×10^{-3}
Tungsten	5.6×10^{-8}	$4.5 imes 10^{-3}$
Iron	10×10^{-8}	$5.0 imes 10^{-3}$
Platinum	11×10^{-8}	3.92×10^{-3}
Lead	22×10^{-8}	3.9×10^{-3}
Nichrome ^c	1.00×10^{-6}	$0.4 imes 10^{-3}$
Carbon	3.5×10^{-5}	-0.5×10^{-3}
Germanium	0.46	$-48 imes 10^{-3}$
Silicon ^d	2.3×10^{3}	-75×10^{-3}
Glass	10^{10} to 10^{14}	
Hard rubber	$\sim 10^{13}$	
Sulfur	10^{15}	
Quartz (fused)	75×10^{16}	

^a All values at 20°C. All elements in this table are assumed to be free of impurities.

^b See Section 27.4.

^c A nickel–chromium alloy commonly used in heating elements. The resistivity of Nichrome varies with composition and ranges between 1.00×10^{-6} and $1.50 \times 10^{-6} \Omega \cdot m$.

^d The resistivity of silicon is very sensitive to purity. The value can be changed by several orders of magnitude when it is doped with other atoms.

Example:

What is the resistance of a Al wire of diameter 1mm and length 1m?

From table : $\rho = 2.82 \times 10^{-8} \Omega m$ $A = \pi (d/2)^2 = 7.85 \times 10^{-7} m^2$ $\ell = 1m$ $R = \frac{\rho \ell}{A} = 0.036 \Omega$

Practical resistors:

The colored bands on these resistors are orange, white, brown, and gold.

TABLE 27.1

Color Coding for Resistors

Color	Number	Multiplier	Tolerance
Black	0	1	
Brown	1	10^{1}	
Red	2	10^{2}	
Orange	3	10^{3}	
Yellow	4	10^{4}	
Green	5	10^{5}	
Blue	6	10^{6}	
Violet	7	10^{7}	
Gray	8	10^{8}	
White	9	10^{9}	
Gold		10^{-1}	5%
Silver		10^{-2}	10%
Colorless			20%

For superconducting materials:

Newton's law:
$$m_e \frac{dv}{dt} = -eE - \frac{m_e v}{\tau}$$

term representing
collisions on a time
scale of $\tau \rightarrow \infty$

Currents confined to surfaces; induced by magnetic fields

TABLE 27.3Critical Temperaturesfor Various Superconductors

Material	T_c (K)
HgBa ₂ Ca ₂ Cu ₃ O ₈	134
Tl—Ba—Ca—Cu—O	125
Bi—Sr—Ca—Cu—O	105
$YBa_2Cu_3O_7$	92
Nb ₃ Ge	23.2
Nb_3Sn	18.05
Nb	9.46
Pb	7.18
Hg	4.15
Sn	3.72
Al	1.19
Zn	0.88

Energy associated with currents and voltage

Electric potential energy for charge Q in voltage ΔV

$$U = Q\Delta V$$

Rate of change of electric potential energy:

$$\frac{dU}{dt} \equiv P = \frac{dQ}{dt} \Delta V = I \Delta V$$
$$P = I \Delta V = I^2 R = \frac{(\Delta V)^2}{R}$$

Consider a 60 W light bulb, connected to a 120 V voltage source.

What is the current passing through the wire in the bulb? (A) 0.5 A (B) 1.0 A (C) 2.0 A (D) 240 A

What is the resistance of the wire in the bulb?

(A) 0.5 Ω (B) 1.0 Ω (C) 2.0 Ω (D) 240 Ω

Which is true:

A.
$$I_1 > I_2$$

B. $I_1 < I_2$
C. $I_1 = I_2$

Which is true: A. $R_1 > R_2$ B. $R_1 < R_2$ C. $R_1 = R_2$

Which is true: A. $\Delta V_1 > \Delta V_2$ B. $\Delta V_1 < \Delta V_2$ C. $\Delta V_1 = \Delta V_2$

Initially, the switch is open and the left capacitor is charged.

Now the switch is closed.

- A. R has no effect.
- C B. R has an effect on the initial Q'.
 - C. R has an effect
 - on the final Q'.