PHY 341/641
Thermodynamics and Statistical Physics

Lecture 20

Methodologies of statistical mechanics. (Chapter 5 in STP)

e Phase transitions in spin systems
e Mean field approximation



9 || 2/06/2012 | Probability distributions 34-35 HW 9 2872012
10 | 2/08/2012 | Continuous distrbutions/Central -} 5 ¢ 3 45 |y 10 2110/2012
limit theorem

11 | 2M10/2012 | Introduction to statistical mechanics | 4.14.2 HW 11 21372012
12 | 2372012 | Enumeration of microstates 43 HW 12 2ME5/2012
13 | 2M5/2012 | Many particle systems 4445 HWW 13 211772012
14 [ 21772012 | Microcanonical ensemble 46 HW 14 212002012
15 | 272002012 | Canonical ensemble 47438 HWW 15 212212012
16 || 2/22/2012 | Grand canonical ensemble 49412 HW 16 202472012
17 || 2724/2012 || Introduction to magnetic systems 5155

212772012 | APS — no class; take-home exam

212972012 | APS -- no class; take-home exam

30272012 | APS — no class; take-home exam
18 | 3/05/2012 | Exam due - Ising model 55 HWW 17 03/07/2012
19 || 3/07/2012 | Ising model hB-AT HW 18 03/09/2012

q 20 || 3/09/2012 | Phase transformation 5.8-510

3M2/2012 | Spring Break

31472012 | Spring Break

3M6/2012 | Spring Break
21 || 3M19/2012 | Many particle systems 6.1-6.2
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Ising model in various lattices — mean field solutions
Microstates :

E.=-J isisj —HZN:Si
=1

I, j(nn)
Mean fields approximation :

E" :—JZN:si q<sj>—HZN:si
[ =1

<Heﬁ>: Jq<sj>+ H=Jgm+H

Note: textbooks differ with counting

q=4/2 q=6/2 neighbors g without double counting.
Here q implies “unique” neighbors.
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Self-consistency condition for mean field treatment

<Heﬁ>: Jq<sj>+ H=Jgm+H

Z, = Ze_ﬂ<Heﬁ>sl = 2cosh(A(Jgm+H))




Mean field self-consistency condition:

m = tanh(4(Jgm + H))

J —
P £Jg =1

=0.5

Condition for non - trivial
solution form atH =0:

=2 Mean field solutions exhibit “critical behavior” (phase
transition) at B Jg=1.




Mean field self-consistency condition for H=0: m = tanh(IB(qu))
Define: £.Jg=1

_ _tanhl Z-m | = tann[ *e
m = tanh(£(Jgm)) = tanh(lg mj = tanh(T mj
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Summary of results for mean field treatment of Ising model

Z,, =[2cosh(B(3gm+H))|*
F =—KTN In[2cosh(A(Jgm + H )]
where: m=tanh(8(Jgm+H))

Internal energy :
olnZ,
op
= —N(Jgm+ H )tanh(8(Jgm + H ))]
= —N(Jgm+ H )m

E=-



Summary of results for mean field treatment of Ising model

(continued)

Internal energy for H =0
E =—-NJgm®

where  m = tanh(8(Jgm))
Heat capacity :

OE 21 (ém
o [5) -onro( )

8_mj ~ Jgm

o8 ), cosh®(B(Jgm))- g
_ 2Nkp?I*g’m’

- cosh?(B(Jam))- Aiq




Summary of results for mean field treatment of Ising model
(continued)

Behavior of heat capacity for H =0

Interms of T_ = J?q ;

_ 2NkS3%J*gq°m?
cosh?(8(Jgm))— AJq

T

3 2Nkm? (TC jz
coshz(;c mj — (TC j i

( TC
Note that © m — - tanh(?mj forT <T,

0 forT >T,

\



Summary of results for mean field treatment of Ising model
(continued)

Behavior for T near T. where m is small

3
I

tanh(-l_l-_—C mj forT <T,
0 forT >T,
forT <T,andT =T, :

T, 1(TC j?’
mr~-—m-=|=m| +---
T 3

T T 1/2
= |1




Summary of results for mean field treatment of Ising model
(continued)  -- behavior for T near T, where m is small

A7)
T. T.
o 2Nkm?* (TC jz
coshz(TC mj - (ch !
T

T
C=0 forT >T,



Summary of results for mean field treatment of Ising model
(continued)  -- behavior for T near T, where m is small

T T 1/2
M3 —||1-—
I(TCJ[ TC]
oo 2Nkm? (chz
coshz(-rcmj—(-rcj !
T

T
forT <T,andT =T,

2Nk




Behavior of magnetic susceptibility (in scaled units):

m = tanh(8(Jgm+H))
(2]
[amj (ﬂ ﬁJq( Usechz(ﬁ(quH))

oH
8mj Vi
oH ). cosh?(B(Jgm+H))- BIqg

2T H) = (

ForH =0:

1

Te
T
x(T,0)=
Jq coshz(TC mj _Ie
T T




Behavior of magnetic susceptibility (in scaled units) -- continued:

c

1 T

x(T,0)=
Jq coshz(TC mj L
T T

ForT >T,; m=0
T

1 v+ _ T 1 Curie - Weiss relation
‘Jq 1_TC ‘Jq T _Tc

T

x(T,0)=

1/2
ForT <T,andT =T,; m~ ﬁ(:j{l_Tj

T
c

c




Behavior of magnetization at T_:

T H
_ tanh(B(Jgqm + H )) = tanh| —m +-—
m = tanh(8(Jgm + H )) = tan (T m+ij

AtT =T.:

H H ’
m(T)_tanh(m(T)jLF]Nm( )+———[ (T.)+ Cj

C k-I_C
= m(T,) = [i_l;l j



Critical exponents:

Y
Il

1— —
T

C

values of the exponents

Quantity Critical behavior | d =2 (exact) | d =3 | mean-field theory
specific heat C~e° 0 (logarithmic) | 0.113 0 (jump)
order parameter m ~ €’ 1/8 0.324 1/2
susceptibility X ~e 7 7/4 1.238 1
equation of state (e = 0) m ~ HY° 15 4.82 3
correlation length E~e? 1 0.629 1/2
correlation function e =0 | G(r) ~ 1/r4=2+7 1/4 0.031 0

Table 5.1: Values of the critical exponents for the Ising model in two and three dimensions. The
values of the critical exponents of the Ising model are known exactly in two dimensions and are
ratios of integers. The results in three dimensions are not ratios of integers and are approximate.
The exponents predicted by mean-field theory are discussed in Sections [5.7] and pages

and [434]
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