PHY 341/641 Thermodynamics and Statistical Physics

Lecture 2

- 1. Continued discussion of microscopic models (Chapter 1)
 - a. Notion of equilibrium in statistical mechanics/thermodynamics
 - b. Macrostates/microstates
- 2. Introduction to thermodynamics (Chapter 2)
 - a. Definition of "the system"
 - b. Thermodynamic variables (T, P, V, N, ...)
 - c. First law of thermodynamics

1/20/2012

.....

Review from last time -Chapter 1 – From Microscopic to Macrosopic Behavior

Assignment: Read Chapter 1 (quickly) during this week and checkout some of the corresponding simulations (HW 1 and HW 2) due Monday 1/23.

"The purpose of this introductory [material] is to whet your appetite..." The chapter introduces a lot of the concepts that we will use (more carefully) throughout the course.

Comment on simulation tools Molecular dynamics

$$m_i \frac{d^2 \mathbf{r}_i}{dt^2} = \mathbf{F}$$

$$\mathbf{F}_{i} = -\nabla_{i} \sum_{j \neq i} u_{pair}(|\mathbf{r}_{i} - \mathbf{r}_{j}|)$$

Example model pair potential (Lennard-Jones):

$$u_{LJ}(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

1/20/2012

PHY 341/641 Spring 2012 — Lecture 2

For an "ideal gas"--

$$m_i \frac{d^2 \mathbf{r}_i}{dt^2} = \mathbf{F}_i \equiv 0$$

1/20/2012

PHY 341/641 Spring 2012 -- Lecture 2

Modeling of a dilute gas of non-interacting particles:

 $P_{L\to R} = \frac{n}{N}$

 $P_{R \to L} = \frac{N - n}{N}$

1/20/2012

Enume	ratior	of p	ossibil	ities for N=4		
	Microstates			n	$P_{L \to R}$	
L	L	L	L	4	1/16	
L	L	L	R			
L	L	R	L	3	4/16	
L	R	L	L			
R	L	L	L			
L	L	R	R			
L	R	R	L			
R	R	L	L	2	6/16	
L	R	L	R			
R	L	R	L			
R	L	L	R			
R	R	R	L			
R	R	L	R	1	4/16	
R	L	R	R			
L	R	R	R			
R	R	R	R	0	1/16	
1/20/2012				PHY 341/641 Spring 201	2 Lecture 2	

Macroscopic viewpoint – thermodynamics (start reading Chapter 2)

PHY 341/641 Spring 2012 -- Lecture 2

Variables of thermodynamics

- > Temperature

 - Zeroth law of thermodynamics: Two systems in thermal equilibrium with a third system are in thermal equilibrium with eachother.
- ➤ Pressure

 ❖ P=F/A
- ➤ Volume

 ❖ V
- ➤ Number of particles

 ❖ N

The relationships between these variables depends on the "equation of state" of the system.

1/20/2012

PHY 341/641 Spring 2012 -- Lecture 2

Examples of "Equations of State"

Ideal gas equation of state:

$$PV = Nk_BT$$

$$k_B = 1.38 \times 10^{-23} \,\text{J/K}$$

11

van der Waals equation of state:

$$\left(P + \frac{N^2}{V^2}a\right)(V - Nb) = Nk_B T$$

1/20/2012

In general the "state" of a system will depend on the thermodynamic variables. For example, the internal energy:

$$U = U(N,T,P,V)$$

Thermodynamic "processes" → change the state of the system

$$U_1(N_1, T_1, P_1, V_1) \Rightarrow U_2(N_2, T_2, P_2, V_2)$$

1/20/2012

PHY 341/641 Spring 2012 -- Lecture 2

Thermodynamic process – work (performed ON the system) dW = -F dx = -P A dx = -P dV $W_{1 \to 2} = -\int_{V_1}^{V_2} P(T,V) dV$

For an ideal gas at constant T:

$$W_{1\to 2} = -\int_{V_1}^{V_2} P(T, V) dV = -\int_{V_1}^{V_2} \frac{NkT}{V} dV = -NkT \ln \frac{V_2}{V_1}$$

1/20/2012

Thermodynamic process -- heat (added TO the system)

Q

For heat added TO the system: Q > 0For heat withdrawn FROM the system: Q < 0

First law of thermodynamics

$$U_2 - U_1 \equiv \Delta U = W + Q$$

1/20/2012

PHY 341/641 Spring 2012 -- Lecture 2

Example: Adiabatic expansion $V_1 \rightarrow V_2$ for an ideal gas system

$$U_2 - U_1 \equiv \Delta U = W + Q = W$$

$$PV = NkT$$

To be continued.....

1/20/2012