PHY 341/641
Thermodynamics and Statistical Physics

Lecture 32

Analysis of classical gases and liquids (STP Chapt. 8)

e Comments about exam
e Virial coefficients
e Radial distribution functions



24 || 3/26/2012 | Bose and Fermi particles 6.5-6.11

25 || 3/28/2012 | Phase transformations 7.1-7.3 HW 21 037302012
26 || 3/30/2012 | Van der Waals Equation 74
27 || 4/02/2012 || Equilibrium constants 74-74 HW 22 04/04/2012
28 || 4/04/2012 | Equilibrium constants 75

4/06/2012 | Good Frday Holiday

29 || 4/09/2012 | Review — begin take-home exam 5-7

41172012 | Mo class — work on exam 5-T
30 | 4/13/2012 | Simulation of chemical potential 7.2 Exam
continued
31 | 4162012 Classical treatment of dense 31-8.9 Exam due
systems
#32 4/18/2012 | Review exam: Virial expansion 8.3-8.4
33 | 4/20/2012 || Radial distribution function 8.5
34 | 4/23/2012 | More topics on classical fluids 8.6-8.9

35 || 4725/2012 | Review

36 || 4272012 | Review

4/30/2012 | Student presentations |

5/02/2012 | Student presentations Il

/0972012 | 9 AM Final exam

-- student presentations 4/30, 5/2 (need to pick topics)



4/18/2012

WFU Physics Colloquium
TITLE: Mechanism of forced elongation of fibrin

SPEAKER: Professor Valeri Barsegov,

Department of Chemistry,
UMass Lowell

TIME: Wednesday April 18, 2012 at 4:.00 PM
PLACE: Room 101 Olin Physical Laboratory

Refreshments will be served at 3:30 PM in the Olin Lounge. All
interested persons are cordially invited to attend.

ABSTRACT

Fibrinogen provides the building blocks for fibrin polymer, the scaffold of blood clots and
thrombi. We determined mechanisms of the forced elongation of fibrin(ogen) monomers and
oligomers using atomic force microscopy and biomolecular simulations on Graphics
Processing Units (GPUs). The 200-fold computational speedup enabled us to follow the
unfolding dynamics in the experimental (centisecond) timescale using experimental conditions
of force application. Mechanical unraveling of fibrin{ogen) is determined by stepwise
unfolding of the C-terminal gamma chain nodules coupled to reversible extension-contraction
of the alpha-helical coiled-coil connectars. We found that under the influence of an applied
force, the coiled-coils, undergo phase transition to form extended parallel beta-sheets. These
results provide important qualitative and quantitative characteristics for fibrin{ogen)
nanomechanics at the single-molecule level, and offer new insight into rich dynamic
mechanical behavior of fibrin monomers and oligomers and the molecular origin of fibrin
viscoelasticity.
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Part of SPS zone 5 conference
April 20-21, 2012

Time, Einstein, and the
Coolest Stuff in the Universe

A free public lecture by Nobel Laureate Received 1997 Nobel Prize
Dr. William Phillips with Steven Chu and Claude

Cohen-Tannoudji “for

development of methods to

cool and trap atoms with

Brendle Recital Hall laser light”
Wake Forest University

National Institute of Standards and Technology

8:00 PM Friday, April 20

www.wfu.edu/physics/sps/spszone52012conf/welcome.html
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Suggestions for efficient learning of topics covered on exam

A. Letitstandasis

Redo exam — turn in work to count points in HW grade

C. Redo exam — meet with instructor to discuss remaining
issues (grading points to be determined)

D. Other??

&



. As a generalization of the Ising model discussed in vour text book consider the following
interaction energy for a system characterized by spin quantum numbers mg where mg can
take 25 + 1 values -5, -5+ 1,..., 5 — 1.5 and where § is a total spin quantum number
which can be an integer or half integer in the presence of an external magnetic field B and
internal exchange energy .J.

E, = —ngzZm_gi —sz_gimgj. (1)
i ij
where the summation over 7 and j includes 2g nearest neighbors. In the mean field

approximation, we approximate the exchange term by taking the average of sum over one of
the spin quantum numbers:

B = —uB,Y ms, — Jq(ms) Y mg, = —Hug 3 ms,. 2)
i i i

(a) Show that for 5 = 1/(kT). the mean field approximation to partition function for each
particle takes the form
_ sinh[(§ + 1)8H.q]

(3 sinh[153Hg] 3)

H=0 or S=0

H>0 S=2 H>0 S=1/2
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Hint for finding single particle partition function

S
7 — Ze—ﬁms eff :eﬂSHeff _|_eﬁ(3_1)Heff _I_.“e_ﬁ(s_l)Heff _I_e_IBSHeff

How to sum geometric series:
M
R=>u" Note that: uR=R—-1+u™*"

1_u|\/|+1
1-u

— R =



Hint for Problem 1 continued:

(a) Show that for 3 = 1/(kT'). the mean field approximation to partition function for each
particle takes the form

sinh[(S + L) 3Hq) 3
sinh[18Hg] (3)

h) Show that the average spin for this svstem is given bv
> ].'_‘] -.. = &

Z(8) =

(ms) = Sf(BHer) (4)

where |
flz) = 5 (S + L)eoth[(§ + 1)r] — Leoth[iz]]. (3)

S
— Mg H e
<m>_m§:£nse 1 dlnz 1 &z
= - -

ie—ﬁmsHeﬁ H op H . Z op
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Hint for Problem 1 continued:

(e) Show that the self-consistency condition is
Hyg = F-"-Bz Ll '}QSJF{EHEITJJ [{]‘J

(d) Write the corresponding transcendental equation in terms of x and the other
parameters of the problem. For certain values of the parameters, this transcendental
equation may have solutions in addition to r = (. For small values of r, show that

flz) = Kz, (7)

-

and find the expression for the coefficient K.

Note that :

P = fuB, + Igst (BH,, )

For x=fH , : X = fuB, + AIqST (X)
Now If f(x)= KX, then self - consistency condition becomes:

puB
X=pL0H . = L
Pl 1— BIgSK
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Hint for Problem 1 continued:

flz) = iq (5 + L)coth[(§ + L)x] — iecoth[ix]].

> series(coth(u), u=0);
-1 1 1 3 2 5 6
— - — O
u—|—3u 45u+945u+(u]
A
f (x) >—+ Bx 4+ Cx’
Xx—0 X

If A=0, thenB=K
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Hint for Problem 1 continued:

(e) Using the result for small x, show that the magnetic susceptibility

Npimg) .
\ - S
X B, (3)

(where N denotes the number of particles), can be written in the form

K .

where K’ and T, are constants which can be expressed in terms of N, S, J. k., and gq.
This result is a generalization of the Curie-Weiss law discussed for the spin-} system.

Note that from previous results :

_ N _ puB,
<ms> = Sf (IBH eff )"‘ SK,BH eff SK 1—,BJqSK
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. Consider a system of particles (either Fermi particles or Bose particles) which are
constrained to move in two dimensions and their energy is given by

e(k) = ~k, (10)

where + is a constant with units of energyv - length and k represents the magnitude of the
wavevector in two dimensions. As defined in Chapter 6 of vour textbook, the density of
states gle) comes from integrating over all microstates according to their energy:

d, (%)E/dﬂk — /g{ﬁ}df. (11)

Here d, indicates the degeneracy of each state — d, = 2 for spin { Fermi particles and d, = 1

for spin () Bose particles. Show that the g(e) for this case takes the form:

. A .
gle) = :1"5, QHH.EE' (12)

i I|

Here A represents the area of the two dimensional space which contains the particles.

Note for isotropic 2 - dimensional system: jd ’k = an' kdk :an kj—kdg
E

Alsonotethat: L*=A
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3. Now consider the system described in question #2 with N independent spin i Fermi
particles.

(a) When the system is at T = (K, find an expression for the chemical potential expressed
as a function of N/A.

(b) In the limit of low temperature (T > 0K') find an expression for the heat capacity.

General condition (Chapt. 6 of STP and Lectures 22-23) :

(e0)

N = kank) = j<ng>g(g)dg

0

1
eﬂ(g_/u) _|_1
1 fore< u

For Fermi system: (n, ) =

U

ForT —0: (n,) 0 fores i

7
= N z.[g(g)dg
0
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Hint for #3 continued:

_oE)_ 8T ale)
&= ‘m{ i) 410¢
1 %o 1
— d
TKT? ﬂkeﬂg ) +1J€g(5) ‘
e” X
=k ,ujg(—+,ujdx
_L e +1 p
O2 forn=1
Note that : j( ) dx:<%forn=2
1
e | 0 forn=3




4. Now consider the system described in question #2 with N independent spin (0 Bose
particles. We are interested in exploring the behavior of this hypothetical system with
1‘e:-;pecr to a Bose condensation. We will assume that, as in the 3-dimensional case, that
fo — 0 in that limit.

(a) Define the Einstein or critical temperature 7, to be the temperature in which all of the
N particles of the systems are accomodated in the "normal” states of the system:

. = 1 . :
A =fn TR 19(5]&’5. (13)
Some possibly useful integrals:
* w2
dr = —.
fn 1776
2

dr = 2.404113806.

fx -
n ef—1
3 4

= I (0
dr = —.
j; ef — 1 * 15

(b) For lower temperatures T < T,. the number of particles accomodated in the "normal”
states is less than N and the remainder N, are found in the zero energy state.
Caleulate the ratio of N /N as a functin of T/7, analogous to the 3-dimensional case

evaluated in Eq. 6.216 of your te'ctbm:-k ( )
Determine T, from: N = j de
/o) 41

ForT <T,, N = N+J' ()1dg
_|_
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5. Consider the van der Waals equation of states which is given in terms of scaled variables —
pressure [P = P/P,, temperature T = T /T,, and density § = p/p, (see Eq. 7.51):

. 85T ,
P =———3(3). 14
=5~ 3(6) (14)
For this same system, the dimensionless Gibb's free energy per particle function is given by
Eq. 7.59. i
B = 3 P
3 p f

(a) Your textbook shows that one point of fluid-vapor coexistence curve for this svstem is
[T =10.9, P = 0.647]. What are the corresponding values of the fluid and vapor
densities fguq and pfeapor-

(b) Find the corresponding coexistence parameters for T = ().8.

See STP Chapt. 7 and Lecture Notes 28
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Gibbs chemical potential at coexistence point

—3.4-

-3.6+

Q)
-

-3.84

-3.84

T =09 P=0647

4/18/2012

gas

0.5

liquid
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Suggestions for efficient learning of topics covered on exam

A. Letitstandasis

Redo exam — turn in work to count points in HW grade

C. Redo exam — meet with instructor to discuss remaining
issues (grading points to be determined)

D. Other??

&



Resume discussion of virial coefficients:

Free energy for interacting particles:
F(TWV,N)=—kTInZ,=—kTInZ,, -kTInZ_
=F.(V,V,N)+F.(V,V,N)

p__(@_Fj _N_kT_(@ch
N )y VLoV )y,
PV 1+V(5|n2cj

T,N

NKT N\ oV

1 _
Z. :V—de"’”rld?’rz---d?’rNe -



Model simulations of Z,.
Isotropic pairwise interaction potentials

U(r,r,,

Lennard - Jones potentlal

u,(r)=4e

Hard - cor

Upc (1) =1

-

ry) = Z”(Ir - D

BEEl

e potential :

3,(?0

Y

o forr<o

Ukc(r)

4/18/2012

0 forr<o

.
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For pair potential :
Z. =iNJ‘d?’rld3r2---d?’rNe‘ﬂU

jd rd r d e—ﬂu(rlz) Pu(rys)—pu(nz)--—pu(rn-a)n)
N

Define:
f__ — e_ﬂu(ﬁz) -1
J

1
Z. :V—de?’rd?’r 0y (L i Lt g Lt Fig) (L Frg )

: jd rd’r, f,, + N(N ;\1/)2'\' ‘2)jd3r1d3r2d3r3f12 fo

=1+
2V



"Virial" expansion of equation of state:

PV :1+V(5|n2cj
T,N

NKT N\ oV |
~1+ pB,(T)+p°By(T) +---
N
where p=—
P V

Evaluation of B,(T):

N(2V2 jdg 4y le_N(N 1J'd312(—,8u(r12) 1)

S TR

T,N

:>B(T)_——_[d r, (e 1)



Evaluation of B, (T):
1 ~pur
B,(T) :_Ejdgrlz(e ﬂU(u)_l)

3
27O

3

For hard sphere: B,(T) =

For square well: B, (T) = 27;03 (1—(e/3‘9 —1)(R3 —1))

Lennard - Jones potential :

oo 2
I I

: 4ot s
BZ(T)=—2m3jx2dx |
0
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