PHY 341/641 Thermodynamics and Statistical Physics

Lecture 35

Review and examples

- Chemical potential example atmospheric pressure
- Chemical potential example battery operation

L			'			
	24	3/26/2012	Bose and Fermi particles	6.5-6.11		
	25	3/28/2012	Phase transformations	7.1-7.3	<u>HW 21</u>	03/30/2012
	26	3/30/2012	Van der Waals Equation	7.4		
	27	4/02/2012	Equilibrium constants	7.4-7.5	HW 22	04/04/2012
	28	4/04/2012	Equilibrium constants	7.5		
		4/06/2012	Good Friday Holiday			
	29	4/09/2012	Review begin take-home exam	5-7		
		4/11/2012	No class work on exam	5-7		
	30	4/13/2012	Simulation of chemical potential	7.2	Exam continued	
	31	4/16/2012	Classical treatment of dense systems	8.1-8.2	Exam due	
	32	4/18/2012	Review exam; Virial expansion	8.3-8.4		
	33	4/20/2012	Radial distribution function	8.5		
	34	4/23/2012	More topics on classical fluids	8.6-8.9		
	35	4/25/2012	Review			
	36	4/27/2012	Review			
		4/30/2012	Student presentations I			
		5/02/2012	Student presentations II			
		5/09/2012	9 AM Final exam			

4/30- Laurence, Zac, Eric 5/2 -- Kristen, Audrey, Griffin

Department of Physics

WFU Physics Colloquium

TITLE: Honors theses presentations

TIME: Wednesday April 25, 2012 at 3:30 PM

PLACE: Room 101 Olin Physical Laboratory

Refreshments will be served at 3:00 PM in the Olin Lounge. All interested persons are cordially invited to attend.

Note early start time

SPEAKERS

- · Matthew Martin
- Dillon Sanders
- · Griffin Shoemaker
- · Hannah Reynolds
 - · Molly Binder
 - Daniel David

Example systems involving analysis of chemical potentials Ref. Kittel and Kroemer, **Statistical Physics**

In the following examples, the "internal chemical potential" is augmented with an external potential which can be added to make a "total" chemical potential

Model of the variation of the atomospheric pressure with altitude based on the consideration of two volumes of gas at different heights in a uniform gravitational field in thermal and diffusive contact. (Ignor temperature and gravitational potential variations with height.)

Here m denotes the average mass per particle, and g denotes the gravitation acceleration.

Assuming ideal gas equation of state:

$$\mu_{tot}(y) = -kT \ln \left[\frac{V}{N(y)} \left(\frac{2\pi mkT}{h^2} \right)^{3/2} \right] + \Phi_{gravity}(y)$$

$$\equiv -kT \ln \left[\left(\frac{2\pi mkT}{h^2} \right)^{3/2} \right] + kT \ln(n(y)) + \Phi_{gravity}(y)$$

where $n(y) = \frac{N(y)}{V}$ represents the gas density as a function of height

Thermodynamic equilibrium implies:

$$\mu_{tot}(y) = \mu_{tot}(0)$$

$$\Rightarrow kT \ln(n(y)) + mgy = kT \ln(n(0))$$

$$\Rightarrow n(y) = n(0)e^{-mgy/kT}$$

Variation of air density with height:

$$n(y) = n(0)e^{-mgy/kT} \equiv n(0)e^{-y/y_c}$$
 $y_c \approx 8.5km$

Another example of chemical potential analysis -- battery

Negative electrode (Pb): $\mu(SO_4^{-2})$ Pb + $SO_4^{-2} \rightarrow PbSO_4 + 2e^-$

Positive electrode (PbO₂):
$$\mu(H^+)$$

$$PbO_2 + H_2SO_4 + 2H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$$

Open circuit voltage:

$$\Delta V_{+} - \Delta V_{-} = 1.6V - (-0.4V) = 2V$$

Negative electrode (Pb): Positive electrode (PbO₂):

$$\Delta\mu(SO_4^{-2}) = -2e\Delta V_{-}$$

$$\Delta V_{-} = -0.4V$$

$$\Delta\mu(H^+) = e\Delta V_+$$

$$\Delta V_{+} = 1.6V$$

