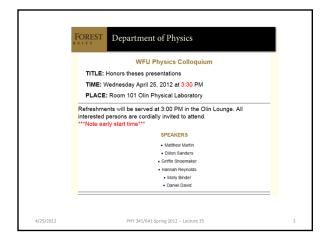
PHY 341/641 **Thermodynamics and Statistical Physics**

Lecture 35

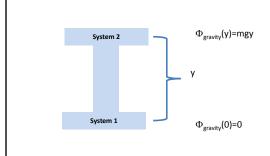

Review and examples

- Chemical potential example atmospheric pressure
- Chemical potential example battery operation

PHY 341/641 Spring 2012 -- Lecture 35

_					
24	3/26/2012	Bose and Fermi particles	6.5-6.11		
25	3/28/2012	Phase transformations	7.1-7.3	HW.21	03/30/2012
26	3/30/2012	Van der Waals Equation	7.4		
27	4/02/2012	Equilibrium constants	7.4-7.5	HW 22	04/04/2012
28	4/04/2012	Equilibrium constants	7.5		
Г	4/06/2012	Good Friday Holiday			
29	4/09/2012	Review begin take-home exam	5-7		
	4/11/2012	No class work on exam	5-7		
30	4/13/2012	Simulation of chemical potential	7.2	Exam continued	
31	4/16/2012	Classical treatment of dense systems	8.1-8.2	Exam due	
32	4/18/2012	Review exam; Virial expansion	8.3-8.4		
33	4/20/2012	Radial distribution function	8.5		
34	4/23/2012	More topics on classical fluids	8.6-8.9		
35	4/25/2012	Review			
36	4/27/2012	Review			
	4/30/2012	Student presentations I			
	5/02/2012	Student presentations II			
	5/09/2012	9 AM Final exam			

4/30- Laurence, Zac, Eric 5/2 -- Kristen, Audrey, Griffin Spring 2012 -- Lecture 35


Example systems involving analysis of chemical potentials Ref. Kittel and Kroemer, **Statistical Physics**

In the following examples, the "internal chemical potential" is augmented with an external potential which can be added to make a "total" chemical potential

Model of the variation of the atomospheric pressure with altitude based on the consideration of two volumes of gas at different heights in a uniform gravitational field in thermal and diffusive contact. (Ignor temperature and gravitational potential variations with height.)

4/25/2012

PHY 341/641 Spring 2012 -- Lecture 35

Here m denotes the average mass per particle, and g denotes the gravitation acceleration.

4/25/2012

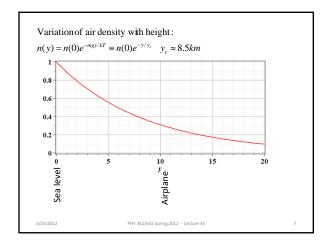
PHY 341/641 Spring 2012 -- Lecture 35

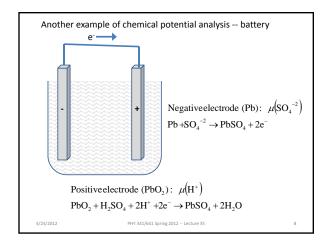
Assuming ideal gas equation of state:

$$\mu_{tot}(y) = -kT \ln \left[\frac{V}{N(y)} \left(\frac{2\pi nkT}{h^2} \right)^{3/2} \right] + \Phi_{gravity}(y)$$

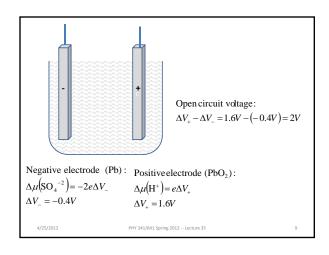
$$= -kT \ln \left[\left(\frac{2\pi nkT}{h^2} \right)^{3/2} \right] + kT \ln(n(y)) + \Phi_{gravity}(y)$$

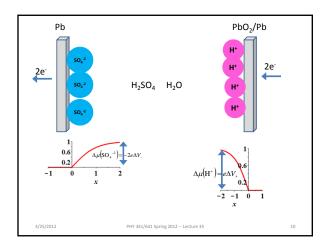
where $n(y) = \frac{N(y)}{V}$ represents the gas density as a function of height


Thermodynamic equilibrium implies:


$$\mu_{tot}(y) = \mu_{tot}(0)$$

$$\Rightarrow kT \ln(n(y)) + mgy = kT \ln(n(0))$$


 $\Rightarrow n(y) = n(0)e^{-mgy/kT}$


4/25/2012

PHY 341/641 Spring 2012 -- Lecture 35

