PHY 341/641
Thermodynamics and Statistical Physics
Lecture 36
Review and examples

¢ Review of general principles
¢ Review of specific examples
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Fundamental principles of thermodynamics and
statistical mechanics

* This course focused on “thermostatics” and statistical
mechanics of systems in equilibrium

* Thermal equilibrium €=>fixed temperature

¢ First law of thermodynamics

E,—~E =AE=0Q+W
For heat added TO the system: O >0
For heat withdrawn FROM the system: Q0 <0
For work done TO the system (contraction): W >0
For work done BY the system (expansion) : W <0

2012 PHY 341/641 Spring 2012 -- Lecture 36




Thermodynamic process -- WORK

various sign conventions !!1#S#!1!

Sign convention in your text --work ON the system;
systemexpands =W <0:

F=PA
dW =—Fdx=—-PAdx =—PdV
;¢Z-+z ::__JZQ 1>(7H1I/)‘1I/ [l] lx
)
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First law of thermodynamics

E,~E =AE=Q+W
O = heatadded TO the system
W = work done ON the system

AR

Fundamental principles of thermodynamics and
statistical mechanics -- continued

¢ From the analysis of the Carnot cycle, a new state variable
—S = entropy was analyzed. For a “reversible” process this

is defined by:

* |Interms of S, the differential form of the first law of
thermodynamics becomes

dE = dO +dW =TdS — PdV




Fundamental principles of thermodynamics and
statistical mechanics -- continued

Second law of thermodynamics

¢ Kelvin-Planck: It is impossible to construct an
engine which, operation in a cycle, will produce
no other effect than the extraction of energy
from a reservoir and the performance of an
equivalent amount of work.

¢ Clausius: No process is possible whose sole result
is cooling a colder body and heating a hotter
body.

¢ Gould-Tobochnik:There exists an additive
function of state known as the entropy S that can
never decrease in an isolated system.
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Fundamental principles of thermodynamics and
statistical mechanics -- continued

Variables and functions:
Internalenergy E

Entropy S
Pressure P
Volume 14
Temperature T
Numberof particles N
Chemicalpotential 7]

Fundamental principles of thermodynamics and
statistical mechanics -- continued

Thermodynamic pressure defined :

P= T[ 65)
oV Jen

Chemical potential defined :

_ —T( as )
ON )z

Entropy relationships due to first law :
as

S=S(E,V,N) :dS:[—) dE+[aSj dV+(§) dN
V,N E,N EV

oE oV ON
. . i 1 P )7
Directlyfromfirst law : dS:?dE+FdV—FdN
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Fundamental principles of thermodynamics and
statistical mechanics -- continued

Analysisof differential formof First Law of Thermodyanics--
dE=TdS—PdV + udN = suppose E=E(S,V,N)

dE:(ﬁ—Ej dS+(a—E] dV+[6—E] dN
oS )y n oV )gy ON ), s

-5, 5L AR
as VN ov SN oN N4
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Fundamental principles of thermodynamics and
statistical mechanics -- continued

Name Potential Differential Form
Internal energy E(S,V,N) dE =TdS — PdV + pdN
Entropy S(E.V.N) ds = %(JE + ;rﬂ' — f—]:rl,\'
Enthalpy H(S.P.N)=E+ PV | dH =TdS + VdP + pdN
Helmholtz free energy | F(T.V.N)=E - TS | dF = —-SdT — PdV + pdN
Gibbs free energy G(T.PN)=F+ PV | dG = —S8dT + VdP + udN
Landau potential (T, V.u) = F — uN dQ) = —SdT — PdV — Ndp
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From the mathematical properties of these functions, we can derive
the “Maxwell relations”. For example, simplifying to fixed N:

Gibbs freeenergy: G=G(T,P)=F+PV

dG=dF+PdV+VdP=—SdT+VdP=(Z—?] dT+(a—Gj dpP
P T

T
HE e

~(5), (&)
OB oT J, Maxwell relation




Summary of Maxwell’s relations for a fixed number of particles

(57, 1),
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Properties of extended Maxwell’s relations
Check consistency :

Fromentropy: u= —T(a—s]
ON )y

From internal energy : = [aij
Y Vs

Is this consistent???

dE:TdS—PdV+de:(a—EJ dS+[a—Ej dV+(a—Ej dN
S )y n oV Jsn oN ),

(QSJ _—(eEIeN)s, —u
oN )y,

. (eelas),, T

Categories of functions and variables
Extensive =» depends on system size
Intensive = independent of system size

Number of particles N Temperature T

Volume \ Pressure P

Entropy S(E,V,N) Density P
Internal energy E(S,V,N) Chemical potential n
Enthalpy H(S,P,N)

Helmholz Free energy F(TV,N)

Gibbs Free energy G(T,RN)
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Special relationship of xto G(T, P, N):
Arguethat: G(T,P,N)= Ng(T,P)
G G(T,P,N)
— =u=g(T,P S pU=——-"
( aNj,,,, u=g(T,P) u I
In terms of Gibbs free energy density g(7', P) (intensive function) - -
Gibbs - Duhem equation :

dg:dp:(a—gJ dT+(a—gj dp
or ), aP),

dg=du :7%dT+%szfsdT+vdP
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Some materials parameters based on thermodynamic
variables and functions

Heat capacity at constant ¥ :

(%) 12)
or), “\or),

In fact, this should be easy, but as we have seen the “natural”
variables of E are E=E(S,V,N) and S=S(E,V,N).

) (@)
os ), as ), \as?),
. T (6E10S),
" (e%Eles?),  (%Elas?),
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Other useful thermodynamic derivatives

Isothermal compressibility :

1(6Vj
K=——| —
viop), .

Isobaric expansion :

1[8Vj
oaA=—| —
vior ),,




Fundamental principles of thermodynamics and
statistical mechanics -- continued

The connection between the macroscopic viewpoint of
thermodynamics and the microscopic viewpoint of
statistical mechanics was made by Boltzmann using the
statistical properties of large systems.
In analyzing a system, Boltzmann introduced
the notion of the number of microstates Q
and postulated its relationship to entropy :
S, =kInQ

tot

tot
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Other examples of microstate analysis for both classical
and quantum systems.

For N particles moving according to the classical
mechanical (Newton’s) laws of physics in d-dimensional
space (d=1,2,3), Liouville’s theorem shows that phase
space dNr d?Np spans all possibilites. In order to count
the number of microstates, it is useful to define:
The number of microstates with energy less than or equal to £ :
T(E) o J.d”Nr d™p

Energy<E

The number of microstates with energy between E and E + dE :
dr
E)=—>Q(E
g(E) e (E)

Note that for large N,k InI"~ k InQ=S
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Fundamental principles of thermodynamics and
statistical mechanics -- continued
Extending Boltzmann'’s analysis of “microcanonical”
ensemble where E is controlled to “canonical” ensemble
where T is controlled

Canonical ensemble:




Canonical ensemble (continued)
E,=E +E, E <<E,
Probability that systemis in microstate s :
Qb(E Es)

tot
ZQ -

InP, :C+InQ (EM E,)

~C+In Qb(E,m)—E{M”(E)) +
oE ),

tot
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Canonical ensemble (continued)

InP.=C+InQ,(E,, -

~C+nQ,(E,) [a'”Q ]

[6k |na%(E)j (as (E)j

InP ~C+InQ,(E,, )- E[kT)Jr

« —E,IkT
~F=Ee]

Canonical ensemble:
_ o _—EJkT
P =Ce

1
~E,IkT
— T

VA
where: Z=>"e """ "partition function"

Calculations using the partition function:

Z=Y e =) e wheref =4
s' s




Canonicaiensemble continued —1average energy of system:
(E)=5 T E = T E e
Ve 7%
107  oInz
Zop  op
Heat capacity for canonical ensemble:

_oE) 1 9E)

Yooor  kT* 0B

__ 1 mz_ (127 (102
kT? 0p* kT*\ Z op?* \Z op

-7 -(8))
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Fundamental principles of thermodynamics and
statistical mechanics -- continued

Evaluations of thermodynamic functions in terms of
canonical partition function :

oinz
<ES>:_ 8ﬂ

(E,)-TS =F(T,V) Helmholz Free Energy

= F(T,V,N)=—kTInZ(T,V,N)

Fundamental principles of thermodynamics and
statistical mechanics -- continued

Grand canonical ensemble:
Zy= 3 M)
=

QLandau(T’ V,/U): F—ﬂN =—kTIn ZG

_ Partition function Thermodynamic potential

Microcanonical Q(E,V,N) S(E,V,N)=k In(Q2)
Canonical Z(TV,N) F(TV,N)=-kT In(Z) F=E-TS
Grand canonical Zg(TV, 1) Qo TV)=KT In(Zg)  Qp40,=F-uN
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Fundamental principles of thermodynamics and
statistical mechanics -- continued

Statistics of non-interacting quantum particles
Single particle states : &
Single particle occupation numbers : n,
Bose particles (integer spin): n, =0,1,2,3, ---
Fermi particles (£ integer spin) : n, =0,1
Grand partition function for thesesystems:
Z (T, 1) = Ze’“ﬁ‘”"‘) summingover all microstates s
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Grand partition function for thesesystems:
Z (T, 1) = Ze’ﬁ(E\ ~#%:) summingover all microstates s

_ s _ s
E, —znkgk N, _znk
% %

Z(T, 1) = H[Z Pl —mi)j
= HZG,k (T, )

where Z;, (T, 1) = Z e—,a(nzgk )

641 Spring

012

Fermi particle case : 71, = 0,1
Zo (T i)=Y o Pliii=smi)
- 1;_ e Plen)
Landau potential for this case:
Q, =—kTINZ,, =—kTIn(L+e "))
Mean occupancy numbers:

oQ 1
) == ayk T e

Self —consistency condition: N = (n,) = defines u
k
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Bose partictecase : 1 =01.2,3,4,---
ZG,k (T, /»l) = ZQ_ﬂ(”Zé‘k —,ttni)

e S
=2 = e

n;=0 R )
Landau potential for this case:
Q, =—kTInZ,, =kTInfl—e )
Mean occupancy numbers:

oQ 1
<”k>:_ a,uk = L _q

Insomecases: N =Y (n,) = defines 1 <0
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Fundamental principles of thermodynamics and
statistical mechanics -- continued
Thermodynamic description of the equilibrium between
two forms “phases” of a material under conditions of
constant Tand P

Review of Gibb's Free energy :
G=G(T,P,N)=E-TS+PV =F+PV
dG =—-SdT +VdP + pdN

G_
ﬂ—ﬂ(T,P)—N—g(T,P)

()5 (x).r
or), N oP), N

Example of phase diagram :

P fusion
curve

liquid
critical

solid
point
vapor pressure
curve
su:Ll:rnr;:tmn triple
N point gas
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Clausius - Clapeyron Equation

gA(T’P):gB(T’P)
dgA(T,P):ng(T P)

(3)-Cl ()35 -
-t 2

dP _A(S/N)

dT  AVIN)
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Examples of systems studied using STP principles

The van der Waals equation of state
-- More realistic than the ideal gas law; contains
some of the correct attributes for liquid-gas phase
transitions.

Ideal gas equation of state: PV = NkT

van der Waals equation of state : (P+a¢//—](V bN)= NkT

here a, b are material - dependent parameters
Dimensionless variables:

~ 2 ~
P= 27[]7—]1" T= g[ﬁ)kT p= 3bﬁ
a a vV

) ~ 8T -~
van der Waals equation of state: P = 3‘% -3p°
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Summary of results for classical fluid with pair potential:

Equation of state in terms of pair correlation function :
DYy 2N g2 8Dy 2y 2R g2 0D g
NkT 3kTV dr 3 dr
Equation of state in terms of virial expansion at low density :

PV
—— =1+ pB(T)+---
NKkT PBAT)

_ 2ap, adu(r) s
Bz(T)—_TId’”V 76
= Atthislimit: g(r) ~ e
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