PHY 341/641 **Thermodynamics and Statistical Physics**

Lecture 36

Review and examples

- Review of general principles
- Review of specific examples

PHY 341/641 Spring 2012 -- Lecture 36

24	3/26/2012	Bose and Fermi particles	6.5-6.11		
25	3/28/2012	Phase transformations	7.1-7.3	HW.21	03/30/2012
26	3/30/2012	Van der Waals Equation	7.4		
27	4/02/2012	Equilibrium constants	7.4-7.5	HW.22	04/04/2012
28	4/04/2012	Equilibrium constants	7.5		
Г	4/06/2012	Good Friday Holiday			
29	4/09/2012	Review begin take-home exam	5-7		
Г	4/11/2012	No class work on exam	5-7		
30	4/13/2012	Simulation of chemical potential	7.2	Exam continued	
31	4/16/2012	Classical treatment of dense systems	8.1-8.2	Exam due	
32	4/18/2012	Review exam; Virial expansion	8.3-8.4		
33	4/20/2012	Radial distribution function	8.5		
34	4/23/2012	More topics on classical fluids	8.6-8.9		
35	4/25/2012	Review			
36	4/27/2012	Review			
	4/30/2012	Student presentations I			
	5/02/2012	Student presentations II			
	5/09/2012	9 AM Final exam			

4/30- Laurence, Zac, Eric 5/2 -- Kristen, Audrey, Griffin

Spring 2012 -- Lecture 36

Fundamental principles of thermodynamics and statistical mechanics

- This course focused on "thermostatics" and statistical mechanics of systems in equilibrium
- Thermal equilibrium $\leftarrow \rightarrow$ fixed temperature
- First law of thermodynamics

$$E_2 - E_1 \equiv \Delta E = Q + W$$

For heat added TO the system: Q > 0For heat withdrawn FROM the system: Q < 0For work done TO the system (contraction): W > 0For work done BY the system (expansion): W < 0

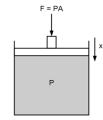
Thermodynamic process -- WORK

various sign conventions !!!#\$#!!!

Sign convention in your text -- work ON the system; system expands $\Rightarrow W < 0$:

$$dW = -Fdx = -PAdx = -PdV$$

$$W_{1\to 2} = -\int_{V_1}^{V_2} P(T, V) dV$$



4/27/2012

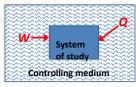
PHY 341/641 Spring 2012 -- Lecture 3

First law of thermodynamics

$$E_2 - E_1 \equiv \Delta E = Q + W$$

Q = heat added TO the system

W = work done ON the system



4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

Fundamental principles of thermodynamics and statistical mechanics -- continued

From the analysis of the Carnot cycle, a new state variable

 S = entropy was analyzed. For a "reversible" process this is defined by:
 dO

 $dS = \frac{dQ}{T}$

• In terms of S, the differential form of the first law of thermodynamics becomes

$$dE = dQ + dW = TdS - PdV$$

4/27/2012

Second law of thermodynamics

- Kelvin-Planck: It is impossible to construct an engine which, operation in a cycle, will produce no other effect than the extraction of energy from a reservoir and the performance of an equivalent amount of work.
- Clausius: No process is possible whose sole result is cooling a colder body and heating a hotter body.
- Gould-Tobochnik:There exists an additive function of state known as the entropy S that can never decrease in an isolated system.

PHY 341/641 Spring 2012 -- Lecture 36

Fundamental principles of thermodynamics and statistical mechanics -- continued

Variables and functions:

Internal energy EEntropy SP Pressure Volume Temperature Number of particles

Chemical potential

4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

Fundamental principles of thermodynamics and statistical mechanics -- continued

Thermodynamic pressure defined:

$$P \equiv T \left(\frac{\partial S}{\partial V} \right)_{E, V}$$

Chemical potential defined:

$$\mu \equiv -T \left(\frac{\partial S}{\partial N} \right)_{E,V}$$

Entropy relationships due to first law:

$$S = S(E, V, N) \implies dS = \left(\frac{\partial S}{\partial E}\right)_{V, N} dE + \left(\frac{\partial S}{\partial V}\right)_{E, N} dV + \left(\frac{\partial S}{\partial N}\right)_{E, V} dN$$

Directly from first law: $dS = \frac{1}{T}dE + \frac{P}{T}dV - \frac{\mu}{T}dN$ PHY 341/641 Spring 2012 – Lecture 36

Analysis of differential form of First Law of Thermodyanics --

$$dE = TdS - PdV + \mu dN \implies \text{suppose } E = E(S, V, N)$$

$$dE = \left(\frac{\partial E}{\partial S}\right)_{VN} dS + \left(\frac{\partial E}{\partial V}\right)_{SN} dV + \left(\frac{\partial E}{\partial N}\right)_{VS} dN$$

$$dE = \left(\frac{\partial E}{\partial S}\right)_{V,N} dS + \left(\frac{\partial E}{\partial V}\right)_{S,N} dV + \left(\frac{\partial E}{\partial N}\right)_{V,S} dN$$

$$\Rightarrow T = \left(\frac{\partial E}{\partial S}\right)_{V,N} \qquad P = -\left(\frac{\partial E}{\partial V}\right)_{S,N} \qquad \mu = \left(\frac{\partial E}{\partial N}\right)_{S,V}$$

Fundamental principles of thermodynamics and statistical mechanics -- continued

Name	Potential	Differential Form
Internal energy	E(S, V, N)	$dE = TdS - PdV + \mu dN$
Entropy	S(E,V,N)	$dS = \frac{1}{T}dE + \frac{P}{T}dV - \frac{\mu}{T}dN$
Enthalpy	H(S, P, N) = E + PV	$dH = TdS + VdP + \mu dN$
Helmholtz free energy	F(T, V, N) = E - TS	$dF = -SdT - PdV + \mu dN$
Gibbs free energy	G(T, P, N) = F + PV	$dG = -SdT + VdP + \mu dN$
Landau potential	$\Omega(T, V, \mu) = F - \mu N$	$d\Omega = -SdT - PdV - Nd\mu$

4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

From the mathematical properties of these functions, we can derive the "Maxwell relations". For example, simplifying to fixed N:

Gibbs free energy: G = G(T, P) = F + PV

$$dG = dF + PdV + VdP = -SdT + VdP = \left(\frac{\partial G}{\partial T}\right)_P dT + \left(\frac{\partial G}{\partial P}\right)_T dP$$

$$\Rightarrow S = - \left(\frac{\partial G}{\partial T} \right)_P \qquad V = \left(\frac{\partial G}{\partial P} \right)_T$$

$$\left(\frac{\partial}{\partial P}\right)_{T} \left(\frac{\partial G}{\partial T}\right)_{P} = \left(\frac{\partial}{\partial T}\right)_{P} \left(\frac{\partial G}{\partial P}\right)_{T}$$

$$\Rightarrow \left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_T$$

Summary of Maxwell's relations for a fixed number of particles

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{I}$$

$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

$$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$$

$$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{P}$$

4/27/2012

341/641 Spring 2012 -- Lecture 36

Properties of extended Maxwell's relations

Check consistency:

From entropy: $\mu = -T \left(\frac{\partial S}{\partial N} \right)_{E,V}$

From internal energy: $\mu = \left(\frac{\partial E}{\partial N}\right)_{V,S}$

Is this consistent???

$$dE = TdS - PdV + \mu dN = \left(\frac{\partial E}{\partial S}\right)_{V,N} dS + \left(\frac{\partial E}{\partial V}\right)_{S,N} dV + \left(\frac{\partial E}{\partial N}\right)_{S,V} dN$$

$$(\partial S)_{S,N} = -(\partial E/\partial N)_{S,N} = -\mu$$

$$\left(\frac{\partial S}{\partial N}\right)_{V,U} = \frac{-\left(\partial E/\partial N\right)_{S,V}}{\left(\partial E/\partial S\right)_{N,V}} = \frac{-\mu}{T}$$

4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

Categories of functions and variables
Extensive → depends on system size
Intensive → independent of system size

Extensiv	e	Intensive	
Number of particles	N	Temperature	Т
Volume	V	Pressure	Р
Entropy	S(E,V,N)	Density	ρ
Internal energy	E(S,V,N)	Chemical potential	μ
Enthalpy	H(S,P,N)		
Helmholz Free energy	F(T,V,N)		
Gibbs Free energy	G(T,P,N)		

4/27/2012

г	

Special relationship of μ to G(T, P, N):

Argue that : G(T, P, N) = Ng(T, P)

$$\left(\frac{\partial G}{\partial N}\right)_{T,P} = \mu = g(T,P) \qquad \Rightarrow \mu = \frac{G(T,P,N)}{N}$$

In terms of Gibbs free energy density g(T,P) (intensive function) - Gibbs - Duhem equation :

$$dg = d\mu = \left(\frac{\partial g}{\partial T}\right)_{P} dT + \left(\frac{\partial g}{\partial P}\right)_{T} dP$$

$$dg = d\mu = -\frac{S}{N}dT + \frac{V}{N}dP \equiv -sdT + vdP$$

4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

Some materials parameters based on thermodynamic variables and functions

Heat capacity at constant V:

$$C_V = \left(\frac{\partial E}{\partial T}\right)_V = T\left(\frac{\partial S}{\partial T}\right)_V$$

In fact, this should be easy, but as we have seen the "natural" variables of E are E=E(S,V,N) and S=S(E,V,N).

$$\begin{split} T = & \left(\frac{\partial E}{\partial S} \right)_{V} \qquad \left(\frac{\partial T}{\partial S} \right)_{V} = \left(\frac{\partial^{2} E}{\partial S^{2}} \right)_{V} \\ \Rightarrow & C_{V} = \frac{T}{\left(\partial^{2} E / \partial S^{2} \right)_{V}} = \frac{\left(\partial E / \partial S \right)_{V}}{\left(\partial^{2} E / \partial S^{2} \right)_{V}} \end{split}$$

4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

Other useful thermodynamic derivatives

Isothermal compressibility:

$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T,N}$$

Isobaric expansion:

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P,N}$$

4/27/2012

The connection between the macroscopic viewpoint of thermodynamics and the microscopic viewpoint of statistical mechanics was made by Boltzmann using the statistical properties of large systems.

In analyzing a system, Boltzmann introduced the notion of the number of microstates $\Omega_{\rm tot}$ and postulated its relationship to entropy:

$$S_{tot} = k \ln \Omega_{tot}$$

4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

Other examples of microstate analysis for both classical and quantum systems.

For N particles moving according to the classical mechanical (Newton's) laws of physics in d-dimensional space (d=1,2,3), Liouville's theorem shows that phase space d^{dN}r d^{dN}p spans all possibilites. In order to count the number of microstates, it is useful to define:

The number of microstates with energy less than or equal to ${\cal E}$:

$$\Gamma(E) \propto \int_{Energy \le E} d^{dN} r d^{dN} p$$

The number of microstates with energy between E and E + dE:

$$g(E) = \frac{d\Gamma}{dE} \to \Omega(E)$$

Note that for large $N, k \ln \Gamma \approx k \ln \Omega = S$

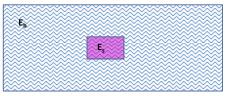
4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

Fundamental principles of thermodynamics and statistical mechanics -- continued

Extending Boltzmann's analysis of "microcanonical" ensemble where E is controlled to "canonical" ensemble where T is controlled

Canonical ensemble:



4/27/2012

Canonical ensemble (continued)

$$E_{tot} = E_s + E_b \qquad E_s << E_b$$

Probability that system is in microstate s:

$$P_{s} = \frac{\Omega_{b}(E_{tot} - E_{s})}{\sum_{s'} \Omega_{b}(E_{tot} - E_{s'})}$$

$$\ln P_{s} = C + \ln \Omega_{b} (E_{tot} - E_{s})$$

$$\approx C + \ln \Omega_{b} (E_{tot}) - E_{s} \left(\frac{\partial \ln \Omega_{b} (E)}{\partial E} \right)_{E_{tot}} + \cdots$$

4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

Canonical ensemble (continued)

$$\ln P_{s} = C + \ln \Omega_{b} \left(E_{tot} - E_{s} \right)$$

$$\approx C + \ln \Omega_{b} \left(E_{tot} \right) - E_{s} \left(\frac{\partial \ln \Omega_{b} (E)}{\partial E} \right)_{E_{tot}} + \cdots$$

$$\left(\frac{\partial k \ln \Omega_{b} (E)}{\partial E} \right)_{E_{tot}} \approx \left(\frac{\partial S_{b} (E)}{\partial E} \right)_{V,N} = \frac{1}{T_{b}}$$

$$\ln P_s \approx C + \ln \Omega_b (E_{tot}) - E_s \left(\frac{1}{kT}\right) + \cdots$$

$$\Rightarrow P_s = C' e^{-E_s/kT}$$

4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

Canonical ensemble:

$$P_s = C' e^{-E_s/kT}$$
$$= \frac{1}{Z} e^{-E_s/kT}$$

where: $Z \equiv \sum_{s'} e^{-E_{s'}/kT}$ "partition function"

Calculations using the partition function:

$$Z \equiv \sum_{s'} e^{-E_{s'}/kT} = \sum_{s'} e^{-\beta E_{s'}}$$
 where $\beta = \frac{1}{kT}$

4/27/2012

$$\begin{split} \left\langle E_s \right\rangle &= \frac{1}{Z} \sum_{s'} E_{s'} e^{-E_{s'}/kT} = \frac{1}{Z} \sum_{s'} E_{s'} e^{-\beta E_{s'}} \\ &= -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = -\frac{\partial \ln Z}{\partial \beta} \end{split}$$
 Heat capacity for canonical ensemble:

$$\begin{split} C_{V} &= \frac{\partial \langle E_{s} \rangle}{\partial T} = \frac{1}{kT^{2}} \frac{\partial \langle E_{s} \rangle}{\partial \beta} \\ &= -\frac{1}{kT^{2}} \frac{\partial^{2} \ln Z}{\partial \beta^{2}} = -\frac{1}{kT^{2}} \left(\frac{1}{Z} \frac{\partial^{2} Z}{\partial \beta^{2}} - \left(\frac{1}{Z} \frac{\partial Z}{\partial \beta} \right)^{2} \right) \\ &= \frac{1}{kT^{2}} \left(\left\langle E_{s}^{2} \right\rangle - \left\langle E_{s} \right\rangle^{2} \right) \end{split}$$

Evaluations of thermodynamic functions in terms of canonical partition function:

$$\left\langle E_{s}\right\rangle =-\frac{\partial \ln Z}{\partial \beta}$$

 $\langle E_s \rangle - TS = F(T, V)$ Helmholz Free Energy

$$\Rightarrow F(T,V,N) = -kT \ln Z(T,V,N)$$

4/27/2012

PHY 341/641 Spring 2012 -- Lecture 36

Fundamental principles of thermodynamics and statistical mechanics -- continued

Grand canonical ensemble:

$$Z_G = \sum_{s'} e^{p(U_{s'}, \mu_{s'})}$$

$$\Omega_{Landau}(T, V, \mu) = F - \mu N = -kT \ln Z_G$$

	Partition function	Thermodynamic potential
Microcanonical	Ω(E,V,N)	$S(E,V,N)=k In(\Omega)$
Canonical	Z(T,V,N)	F(T,V,N)=-kT In(Z) F=E-TS
Grand canonical	$Z_G(T,V,\mu)$	$\Omega_{\text{Landau}}(\text{T,V},\mu)\text{=-kT In}(\text{Z}_{\text{G}}) \qquad \Omega_{\text{landau}}\text{=F-}\mu\text{N}$
4/27/2012	DHV 241/G41 Spri	ing 2012 Lecture 36

	١	
_	1	
	,	

Statistics of non-interacting quantum particles

Single particle states:

Single particle occupation numbers: n_k

Bose particles (integer spin): $n_k = 0,1,2,3,\cdots$

Fermi particles ($\frac{1}{2}$ integer spin): $n_k = 0,1$

Grand partition function for these systems:

$$Z_G(T,\mu) = \sum_s e^{-\beta(E_s - \mu N_s)} \text{ summing over all microstates } s$$
(22/2012 PPIY 341/641 Sorries 2012 - Lecture 36

Grand partition function for these systems:

$$Z_G(T, \mu) = \sum_{s} e^{-\beta(E_s - \mu N_s)}$$
 summing over all microstates s

$$E_s = \sum_k n_k^s \varepsilon_k \qquad N_s = \sum_k n_k^s$$

$$\begin{split} E_s &= \sum_k n_k^s \mathcal{E}_k \qquad \qquad N_s = \sum_k n_k^s \\ Z_G(T,\mu) &= \prod_k \left(\sum_s e^{-\beta \left(n_k^s \mathcal{E}_k - \mu n_k^s \right)} \right) \\ &\equiv \prod_k Z_{G,k}(T,\mu) \\ \text{where } Z_{G,k}(T,\mu) &\equiv \sum_s e^{-\beta \left(n_k^s \mathcal{E}_k - \mu n_k^s \right)} \end{split}$$

where
$$Z_{G,k}(T,\mu) \equiv \sum_{k} e^{-\beta \left(n_k^s \varepsilon_k - \mu n_k^s\right)}$$

Fermi particle case :
$$n_k^s=0,1$$

$$Z_{G,k}(T,\mu)\equiv\sum_s e^{-\beta\left(n_k^s \varepsilon_k-\mu n_k^s\right)}$$

$$=1+e^{-\beta(\varepsilon_k-\mu)}$$

Landau potential for this case:

$$\Omega_{\mathbf{k}} = -kT \ln Z_{G,k} = -kT \ln \Big(1 + e^{-\beta(\varepsilon_k - \mu)}\Big)$$

Mean occupancy numbers:

$$\langle n_k \rangle = -\frac{\partial \Omega_k}{\partial \mu} = \frac{1}{e^{\beta(\varepsilon_k - \mu)} + 1}$$

Bose particle case : $\overline{n_k^s} = 0,1,2,3,4,\cdots$ Bose particle case: $n_k = 0, -1, -1, -1, \dots, 1$ $Z_{G,k}(T,\mu) \equiv \sum_{s} e^{-\beta(n_k^s \varepsilon_k - \mu n_k^s)}$ $= \sum_{n_k^s = 0}^{\infty} e^{-\beta(\varepsilon_k - \mu)n_k^s} = \frac{1}{1 - e^{-\beta(\varepsilon_k - \mu)}}$ Landau potential for this case:

 $\Omega_{\mathbf{k}} = -kT \ln Z_{G,k} = kT \ln \left(1 - e^{-\beta(\varepsilon_k - \mu)}\right)$

Mean occupancy numbers:

$$\langle n_k \rangle = -\frac{\partial \Omega_k}{\partial \mu} = \frac{1}{e^{\beta(\varepsilon_k - \mu)} - 1}$$

In some cases: $N = \sum_{k} \langle n_k \rangle \Rightarrow$ defines $\mu \le 0$

Fundamental principles of thermodynamics and statistical mechanics -- continued

Thermodynamic description of the equilibrium between two forms "phases" of a material under conditions of constant T and P

Review of Gibb's Free energy:

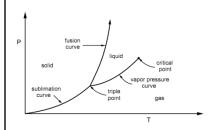
$$G = G(T, P, N) \equiv E - TS + PV = F + PV$$

$$dG = -SdT + VdP + \mu dN$$

$$\mu = \mu(T, P) = \frac{G}{N} \equiv g(T, P)$$

$$\left(\frac{\partial g}{\partial T}\right)_{P} = -\frac{S}{N} \qquad \left(\frac{\partial g}{\partial P}\right)_{T} = \frac{V}{N}$$

Example of phase diagram :



Clausius - Clapeyron Equation

$$g_A(T,P) = g_B(T,P)$$

$$dg_A(T,P) = dg_B(T,P)$$

$$\left\{ \left(\frac{\partial g_A}{\partial T} \right)_P - \left(\frac{\partial g_B}{\partial T} \right)_P \right\} dT + \left\{ \left(\frac{\partial g_A}{\partial P} \right)_T - \left(\frac{\partial g_B}{\partial P} \right)_T \right\} dP = 0$$

$$-\left\{\frac{S_A}{N_A} - \frac{S_B}{N_B}\right\} dT + \left\{\frac{V_A}{N_A} - \frac{V_B}{N_B}\right\} dP = 0$$

$$\Rightarrow \frac{dP}{dT} = \frac{\Delta(S/N)}{\Delta(V/N)}$$

4/27/2012

341/641 Spring 2012 -- Lecture 36

Examples of systems studied using STP principles

The van der Waals equation of state

-- More realistic than the ideal gas law; contains some of the correct attributes for liquid-gas phase transitions.

Ideal gas equation of state: PV = NkT

van der Waals equation of state :
$$\left(P + a \frac{N^2}{V^2}\right) (V - bN) = NkT$$

here a, b are material - dependent parameters

Dimensionless variables:

$$\widetilde{P} \equiv 27 \left(\frac{b^2}{a}\right) P \quad \widetilde{T} \equiv \frac{27}{8} \left(\frac{b}{a}\right) kT \qquad \widetilde{\rho} \equiv 3b\frac{N}{V}$$

van der Waals equation of state : $\tilde{P} = \frac{8\tilde{\rho}\tilde{T}}{3-\tilde{\rho}} - 3\tilde{\rho}^2$

4/27/2012

341/641 Spring 2012 -- Lecture 36

Summary of results for classical fluid with pair potential:

Equation of state in terms of pair correlation function:

$$\frac{PV}{NkT} = 1 - \frac{2\pi N}{3kTV} \int dr \, r^3 \, \frac{du(r)}{dr} g(r) = 1 - \frac{2\pi \beta \rho}{3} \int dr \, r^3 \, \frac{du(r)}{dr} g(r)$$

Equation of state in terms of $\,$ virial expansion at low density :

$$\frac{PV}{NkT}\approx 1+\rho B_2(T)+\cdots$$

$$B_2(T) = -\frac{2\pi\beta}{3} \int dr \, r^3 \, \frac{du(r)}{dr} e^{-\beta u(r)}$$

 \Rightarrow At this limit: $g(r) \approx e^{-\beta u(r)}$

4/27/2012

1	7