PHY 341/641 **Thermodynamics and Statistical Physics**

Lecture 3

- 1. Introduction to thermodynamics (Chapter 2)
 - a. Definition of "the system"
 - b. Thermodynamic variables (T, P, V, N, ...)
- First law of thermodynamics -- the sign of work
 a. Some examples for ideal gas systems

 - b. Some cyclic processes
 - c. Efficiency of process

PHY 341/641 Spring 2012 -- Lecture 3

Macroscopic viewpoint – thermodynamics System of study Controlling medium

1/23/2012

PHY 341/641 Spring 2012 -- Lecture 3

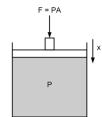
Thermodynamic process -- WORK

various sign conventions !!!#\$#!!!

Sign convention in your text -- work ON the system; system expands $\Rightarrow W < 0$:

$$dW = -Fdx = -PAdx = -PdV$$

$$W_{1\to 2} = -\int_{V}^{V_2} P(T, V) dV$$



1/23/2012

PHY 341/641 Spring 2012 - Lecture 3

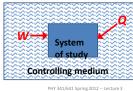
$dW=\pm PdV$ Work done BY the system Work done ON the system				
Textbook	Sign			
Gould & Tobochnik, Statistical and Thermal Physics	(2010) -			
Kittel & Kroemer, Thermal Physics (1980)				
Serway & Jewitt, <i>Physics</i> (8 th Ed.) (2010)	-			
Serway & Beichner, <i>Physics</i> (5 th Ed.) (2000)				
Baierlein, Thermal Physics (1999)				
Callen, Thermodynamics (1985)				
Bailyn, A Survey of Thermodynamics (1994)				
Fermi, Thermodynamics (1936)				

First law of thermodynamics

$$U_2 - U_1 \equiv \Delta U = Q + W$$

 $Q \equiv \text{heat added TO the system}$

 $W \equiv \text{work done ON the system}$



1/23/2012

dU = dQ + dWFirst law: dW = -PdV

Examples of heat and work performed by ideal gas

PV = NkT $(k \equiv k_B \text{ Boltzmann constant})$

$$U = \frac{k}{\gamma - 1} NT = \frac{PV}{\gamma - 1} \quad (\gamma = C_P / C_V)$$

Various ideal gas processes (assuming N constant)

Process	Variables	Q	w	Δυ
Constant V	$V_{1}, P_{1}, T_{1} \rightarrow V_{1}, P_{2}, T_{2}$	$\frac{(P_2 - P_1)V_1}{\gamma - 1}$	0	$\frac{(P_2 - P_1)V_1}{\gamma - 1}$
Constant P	$V_{1}, P_{1}, T_{1} \rightarrow V_{2}, P_{1}, T_{2}$	$\frac{\gamma P_1(V_2 - V_1)}{\gamma - 1}$	$-P_1(V_2-V_1)$	$\frac{P_1(V_2-V_1)}{\gamma-1}$
Constant T	$V_1, P_1, T_1 \rightarrow V_2, P_2, T_1$	$P_iV_i \ln \left(\frac{V_2}{V_i}\right)$	$-P_1V_1\ln\left(\frac{V_2}{V_1}\right)$	0
Q = 0	$V_1, P_1, T_1 \rightarrow V_2, P_2, T_2$	0	$-\frac{P_iV_i}{\gamma-1}\left(1-\left(\frac{V_i}{V_2}\right)^{\gamma-1}\right)$	$-\frac{P_iV_i}{\gamma-1}\left(1-\left(\frac{V_i}{V_2}\right)^{\gamma-1}\right)$

DHV 3/11/6/11 Spring 2012 -- Lecture 3

Some details of the adiabatic case: Q = 0

$$dU = dW$$

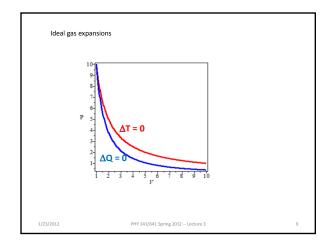
$$\frac{d(PV)}{\gamma - 1} = -PdV$$

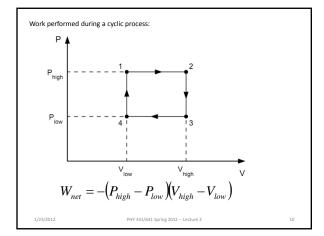
$$PdV\left(\frac{1}{\gamma - 1} + 1\right) + VdP\left(\frac{1}{\gamma - 1}\right) = 0$$

$$\frac{dV}{V}\gamma + \frac{dP}{P} = 0 \qquad \Rightarrow PV^{\gamma} = P_1V_1^{\gamma}$$

1/23/2012

PHY 341/641 Spring 2012 -- Lecture 3





Efficiency of cyclic processes:

The notions of work and heat can be used for practical devices Example: Internal combustion engine
Otto cycle:
http://www.howstuffworks.com/engine1.htm

General measure of process efficiency (assuming no frictional losses; "completely reversible processes"):

$$\varepsilon = \frac{\text{output}}{\text{input}} = \frac{\text{work done by system}}{\text{heat input to system}} = \frac{-W_{total}}{Q_{input}}$$

1/23/2012

PHY 341/641 Spring 2012 -- Lecture 3

