PHY 341/641
Thermodynamics and Statistical Physics

Lecture 5
1. Entropy
2. Second law of thermodynamics

3. Variable dependences of thermodynamic relationships
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Entropy for a reversible process (quasi-static via continuous
changes in the variables):
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Note that dS is an “exact differential” dQ is not
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Square cycle:
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Second law of thermodynamics

¢ Kelvin-Planck: It is impossible to construct an
engine which, operation in a cycle, will produce
no other effect than the extraction of energy
from a reservoir and the performance of an
equivalent amount of work.

¢ Clausius: No process is possible whose sole result
is cooling a colder body and heating a hotter
body.

¢ Gould-Tobochnik:There exists an additive
function of state known as the entropy S that can
never decrease in an isolated system.
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Comment on “quasi-static” restrictions

Consider the free expansion of an
Lo isolated ideal gas, initially in left
chamber at V; with vacuum in right
i Y chamber and finally occupying full
volume V,.

In order to use the laws of thermodynamics, we must envision a
quasi-static process that accomplishes the free expansion

dU =TdS - PdV =0
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Variables and functions:
Internalenergy U
Entropy S
Pressure P
Volume \Y
Temperature T
Numberof particles N




Assume N constant --

Consider First Law of Thermodyamics - -
dU =TdS -PdV = suppose U =U(S,V)
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Further relations:
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Mathematical transformations for continuous functions of
several variables & Legendre transforms:
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Mathematical transformations for continuous functions of
several variables & Legendre tr(nsfjrms continued:
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Define new function

dy

For w=z-ux, dw = dz —udx — xdu = udx + vdy —udx — xdu
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For thermodynamic functions:

Internalenergy: U =U(S,V)
dU =TdS — PdV
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Enthalpy: H=H(S,P)=U+PV
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Name Potential Differential Form
Internal energy E(S.V.N) dE =TdS — PdV + pdN
Entropy S(E.V.N) ds = %rlF + ;rﬂ' - %n’.\'
Enthalpy H(S,PN)=FE+ PV | dH =TdS + VdP + pdN
Helmholtz free energy | F(T.V.N)=E -TS | dF SdT — PdV + pdN
Gibbs free energy G(T.P.N)=F+ PV | dG SdT + VdP + pdN
Landau potential QT V,u)=F — uN dQ} = —SdT — PdV — Ndpu




Entropy: S=S(U,V)
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