PHY 712 Electrodynamics
10-10:50 AM  MWF Olin 107

Plan for Lecture 15:

Finish reading Chapter 6

electromagnetic fields

3. Time harmonic fields
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Some details of Liénard-Wiechert results

Energy density and flux associated with
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WFU Physics Colloquium

TITLE: Production and Characterization of Bio-based Adhesives for
Construction Applications

SPEAKER: Professor Eiham (Ellie) H. Fini,

Department of Civil Engineering,
North Carolina A&T University

TIME: Wednesday February 19, 2014 at 4:00 PM
PLACE: Room 101 Qlin Physical Laboratory

Refreshments will be served at 3:30 PM in the Clin Lounge. All
interested persons are cordially invited to attend

ABSTRACT

To enhance economic. environmental and social well-being beth private and public
agencies are emphaslzmg the ﬂEEﬂ for ﬁﬂﬂpﬂﬂg more “sustainable” practices and products
in design, construction, and ire, including p . The trend
toward has led 1ha P industry to pme ‘more emphasis on
application of new materials such as warm mix asphait (WMA), half-warm mix asphalt
(HWMA) and cold mix asphait (CMA) in order to reduce carbon footprints of pavement and
to reduce fuel consumption and CO2 emission. Depleting aggregate resources and a
stricter reguiatory environment aiso led exploitation schemes to evolve towards greater
recycling emphasizing on increasing percentages of reclaimed asphalt pavements (RAP),
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Solution of Maxwell’'s equations in the Lorentz gauge -- continued

Liénard-Wiechert potentials and fields --

Determination of the scalar and vector potentials for a moving
point particle (also see Landau and Lifshitz The Classical
Theory of Fields, Chapter 8.)

Consider the fields produced by the following source: a point
charge q moving on a trajectory Ry(t).

Charge density: p(r,7) = g6* (r—R (1))

Current density: J(r,t)=¢R, ()5’ (r—=R (1)), where R (1)=
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dt

dR, ()

Solution of Maxwell’s equations in the Lorentz gauge -- continued

b= S(t'-(-|r-r'| /)

']\

A1) = jj'aﬂ dt'J(r t)‘d( (- [r—r'| /c).
We performmg the |ntegrat|ons over first d®’ and then dt’
making use of the fact that for any function of ¢,

o rn s (g ; f@,)
[ arra )b(tf(tf\r—Rq(z)\/c)):m,
clr=R, ()]
where the ““retarded time" is defined to be
_ =R,
r c .
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Comment on Lienard-Wiechert potential results
f dt' f{t)5(t = (t = r = Ry(t')]/c)) =

where the “retarded time" is defined to be

¢, =t D= Baltell
{4

Note that for any function F(x):
j F(x)8(x—x,)dx = F(x,)

Now consider a function p(x), for which p(x,)=0fori=12,---
w w dp
j F(x)S(p(x))dx =jF(x) 38 (x-x, )E dx

N F(x)
27

X,
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Comment on Lienard-Wiechert potential results -- continued
f dt' f{t)8(t' = (t—|r = Ry(t')l/¢)) = ———— f) ,
—x

where the “retarded time” is defined to be

fist— Ie = Ry(tr)|
{4

In this case we have: T F@s(p(t))de'= B () —

‘lil'{q(tr)‘(rqu(tl))

wher p(t-)ztu[,fw]
c
dr (t'
Py ajt('t)'(rfR‘f(t'))zl,Rq(l')‘(r—R”(l'))
a C‘riR(/(tl)‘ - C‘rqu(t')

Solution of Maxwell’s equations in the Lorentz gauge -- continued

Resulting scalar and vector potentials:

q 1
D(r,t) = _
.0 47reoR_V'R
C
q v
A(r,t)= _
®) drec® p_V- R
c

Notation: R = r— Rq(tr) Ir— R ()]
=f—— 47

v=R () ¢

02/19/2014 PHY 712 Spring 2014 - Lecture 15




Solution of Maxwell’s equations in the Lorentz gauge -- continued

In order to find the electric and magnetic fields, we need to
evaluate A(T. ¢
E(r,t)=-VO(r,t)— %
t

B(r,t) = VxA(r,1)

The trick of evaluating these derivatives is that the retarded
time t, depends on position r and on itself. We can show the
following results using the shorthand notation:

R ot, R
V[r = and 5:7‘/
c[R—"'R) [R——)
c c
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Solution of Maxwell’'s equations in the Lorentz gauge -- continued

2 .
wvorn=-1 1 _Ig[1-¥ 7L(R7V Rj+ rRYVR|
4re, VAR) c c c c

R
¢
_OA) _ ¢ 1 ﬂ ﬁ7V<R7V~R 7ﬂ(R7V<R)
ot 4re, (R V4R)3 el Re I ¢ c ’
c
2 .
Er=-1 1 [R—ﬁ] 1-2|+[ Rx (R-ﬁ]xlz 4
47r€u( v-R] c @ c c
R_i
c

q —Rxv

47[6002 (R v.R]’[ I c

B(r,7)=

v R)Z cR

2/19/2014
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Maxwell’'s equations

Coulomb's law : V-D=p,.
! oD
Ampere - Maxwell'slaw : VxH - = =J e
o
Faraday's law : VxE+aﬂ—l?:0
o

No magnetic monopoles : V-B=0

Energy analysis of electromagnetic fields and sources
Rate of work done on source J(r,?) by electromagnetic field :

dr

Expressing source current in terms of fields it produces:

dl:jd% E(VxH—a—D)
dt ot

2/19/2014

aw = AE e =,[d3r E-J
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Energy analysis of electromagnetic fields and sources -
- continued

d—W:jd% E-J=[dr E-(VxH—aDj
dt ot

=—[ar (V~(E><H)+E~6D+H~6BJ
ot ot

Let S=ExH "Poynting vector"
1 .
= 5 (E -D+H- B) energy density

:%+V-S:—E-J
ot
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Energy analysis of electromagnetic fields and sources -
- continued

dEmech = J‘dSV E-J
dt
Electromagnetic energy density: u = % (E -D+H- B)

Ea = _[dS’" ”(r’t)
Poynting vector: S=ExH

From the previous energy analysis : % +V-S=-E-J

dE
o P [y 5 S(er)fr e

Spring 2014 — Lecture 14

Momentum analysis of electromagnetic fields and sources

dP,.., N
—eh = | d’r (pE+JxB
et =[d'r (p )
Follows by analogy with Lorentz force :

F=q(E+v><B)
Pﬁe/d :‘%J.dsr (EXB)

Expression for vacuum fields :

%+% — ZIdSr ai
dt dt ; j arj

Maxwell stress tensor :

1
7= EO[EI.E]. +c’BB, f@jf(E-E+czB.B)j




Comment on treatment of time-harmonic fields
Fourier transformation in time domain :

Er.1) L j doEr,a) e
2z 2,

Er o = Jdt E(r, e

0

Note that E(r,?) is real = E(r, w) = E'(r,- )

These relations and the notion of the superposition principle,

lead to the common treatment :

Efr)=R(Erwe™ )= %(ﬁ(r, e +E'(r,w)e”)
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Comment on treatment of time-harmonic fields -- continued

Equations for time harmonic fields:

By =% (B we™ )= %(E(r, e ™ +E'(r,c)e™)
Coulomb' s law : V-D=p,. V-D= P e
Ampere - Maxwell'slaw : VxH _%) =3, Vx H+ioD = ],m,
Faraday's law : V><E+66—l::0 VxE-ioB=0
No magnetic monopoles : V-B=0 V-B=0

Note -- in all of these, the real part is taken at the end of the
calculation.
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Comment on treatment of time-harmonic fields -- continued

Equations for time harmonic fields:

= %(ﬁ(r, we ™ +E(r,w)e )

Poynting vector : S(r,t) =E)xH(T,1)

S(r,¢)= %(E(r, we ™ +E'(r,0)e™ )x (ﬁ(r, we ™ +H(r, a))e“”‘)

Er,)=R (Emwe™)

= %(E(r, o)xH'(r,0)+E (r,0)x H(r, a)))
+ % (il(r, w)x Hr,w)e ™ +E'(r,0) x H'(r, 0)* )

(8(1),,,, = m(% (B, apx i, a)))]
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1. Suppose that an electromagnetic wave of pure (real) frequency w is traveling along the z-axis of a wave guide
having a square cross section with side dimension a composed of a medium having a real permittivity constant € and
a real permeabllity constant y. Suppose that the wave is known to have the form:

E(r.0)= ‘R{H,,c”" ot {(r_um)ﬁsin [ﬂjj}}
4 a

H(r.t)::lt{il” gl [—i.{ i’m[ﬁj 3+ cm(ﬁ] ,LL
T a a

Here H, denctes a real amplitude, and the parameter & is assumed to be real and equal to

| 2 2
k= Jgum’—[fj , for ;nnf>[iJ
\ a a

a. Show that this wave satisfies the sourceless Maxwell's equations.

b. Find the form of the time-averaged Poynting vector

(8), =~ R{E(r.0xH' (r.0)}

2

for this electromagnetic wave.
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Summary and review

Maxwell’s equations

Coulomb's law :

Ampere-Maxwell's law :

Faraday's law :

No magnetic monopoles:
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V.D:pﬁee

oD

VXH_*ZJﬁee
ot :

VxE+a—B:0
ot

V-B=0

ture 15 20

Maxwell’s equations

For linear isotropic media -- D=¢E; B=yH

and no sources :

Coulomb's law :

Ampere - Maxwell's law :

Faraday's law :

No magnetic monopoles :
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Analysis of Maxwell’s equations without sources -- continued:
Coulomb's law : V-E=0

Ampere-Maxwell'slaw: VxB-— yg(;—E =0
t

oB

Faraday's law : VxE +5 =0
No magnetic monopoles: V-B=0
Vx(VxB—ysa—EJ:_VZB_ﬂga(VXE)
ot ot
P o’B
=-V'B+ue =0
Hoor
VX(VXE+@j:,VzE+M
ot ot

~2

- VE+uelE g
ot~
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Analysis of Maxwell’'s equations without sources -- continued:
Both E and B fields are solutions to a wave equation:

2
VT—%§g=o
v Ot
2
vT-%a?zo
v Ot
where vzsczmzi
ue n’

Plane wave solutions to wave equation :

B(r,))=R(B,e™ ™)  E(r,1)=R(E,e™ ™)
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Analysis of Maxwell’s equations without sources -- continued:
Plane wave solutions to wave equation :

B(r,)=R(B,e™ )  E(r,r)=R(E )

2 2
K" = (a)) = (nw} wheren= |25
v c Hof

Note: &, i, n, k can all be complex; for the moment we will
assume that they are all real (no dissipation).

Note that E and B, are not independent;
3

from Faraday'slaw: VxE+ ;—B =0
t

kxE; nlh(xEo
2] c

=B, =

alsonote : R-E‘,:O and IA(-BU:O
2 PHY 712
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Analysis of Maxwell’s equations without sources -- continued:
Summary of plane electromagnetic waves :

B(r,t): iR[nkXEOe‘k ‘”im‘] E(r,t): iR(Eoeikr—xwz)
c

2 2
k[’ :(gj :(ﬁj wheren= |5 andk-E, =0
v c Ho&y

Poynting vector for plane electromagnetic waves :

<S>uvg = %SR Eoeikr—imt X 1[nk X EO eik~rimtJ
g 7] c

—nEOzﬁ_l\/;Eo
2uc 2\ u
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Analysis of Maxwell’'s equations without sources -- continued:
Summary of plane electromagnetic waves :

B(r,t): iR[nkXEoe‘k ri“"] E(r,t): ER(EOeikrﬂwt)
c

2 2
‘k‘z = (gj = (@j wheren=_ |45 andﬁ-EO =0
v ¢ Ho&y

Energy density for plane electromagnetic waves :

<u>avg = %SR(EE()@“{'F"M -(Eoeik‘rfi(u( )* )+

*

lﬁR 1 nk x E, okrior nk x E, pkr—ion
4 u c c
1 2
=—¢E
2 ‘ 0‘ PHY 712
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