
Electrodynamics – PHY712

Lecture 3 – Electrostatic potentials and fields

Reference: Chap. 1 in J. D. Jackson’s textbook.

1. Poisson and Laplace Equations

2. Green’s Theorem

3. One-dimensional examples
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Poisson and Laplace Equations

We are concerned with finding solutions to the Poisson equation:

∇2ΦP (r) = −ρ(r)

ε0
(1)

and the Laplace equation:
∇2ΦL(r) = 0. (2)

In fact, the Laplace equation is the “homogeneous” version of the Poisson equation. The
Green’s theorem allows us to determine the electrostatic potential from volume and
surface integrals:

Φ(r) =
1

4πε0

∫
V

d3r′ρ(r′)G(r, r′)+
1

4π

∫
S

d2r′ [G(r, r′)∇′Φ(r′)− Φ(r′)∇′G(r, r′)]·̂r′.

(3)
This general form can be used in 1, 2, or 3 dimensions. In general, the Green’s function must be constructed to

satisfy the appropriate (Dirichlet or Neumann) boundary conditions. Alternatively or in addition, boundary

conditions can be adjusted using the fact that for any solution to the Poisson equation, ΦP (r) other solutions

may be generated by use of solutions of the Laplace equation ΦP (r) + CΦL(r), for any constant C.
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Component’s of Green’s Theorem

∇2Φ(r) = −ρ(r)

ε0
(4)

∇′2G(r, r′) = −4πδ3(r− r′). (5)

Φ(r) =
1

4πε0

∫
V

d3r′ρ(r′)G(r, r′)+
1

4π

∫
S

d2r′ [G(r, r′)∇′Φ(r′)− Φ(r′)∇′G(r, r′)]·̂r′.

(6)
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Example of charge density and potential varying in one dimension

Consider the following one dimensional charge distribution:

ρ(x) =


0 for x < −a

−ρ0 for −a < x < 0

+ρ0 for 0 < x < a

0 for x > a

(7)

We want to find the electrostatic potential such that

d2Φ(x)

dx2
= −ρ(x)

ε0
, (8)

with the boundary condition Φ(−∞) = 0.
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Electrostatic field solution

The solution to the Poisson equation is given by:

Φ(x) =


0 for x < −a

ρ0

2ε0
(x+ a)2 for −a < x < 0

− ρ0

2ε0
(x− a)2 + ρ0a

2

ε0
for 0 < x < a

ρ0

ε0
a2 for x > a

. (9)

The electrostatic field is given by:

E(x) =


0 for x < −a

−ρ0

ε0
(x+ a) for −a < x < 0

ρ0

ε0
(x− a) for 0 < x < a

0 for x > a

. (10)
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Comment about the example and solution

This particular example is one that is used to model semiconductor junctions where the
charge density is controlled by introducing charged impurities near the junction. A plot
of the results is given below.

The solution of the Poisson equation for this case can be determined by piecewise
solution within each of the four regions. Alternatively, from Green’s theorem in
one-dimension, one can use the Green’s function G(x, x′) = 4πx<, where,

Φ(x) =
1

4πε0

∫ ∞

−∞
G(x, x′)ρ(x′)dx′. (11)

In the expression for G(x, x′) , x< should be taken as the smaller of x and x′. It can be
shown that Eq. 21 gives the identical result for Φ(x) as given in Eq. 9.
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Notes on the one-dimensional Green’s functions

The Green’s function for the one-dimensional Poisson equation can be defined as a
solution to the equation:

∇2G(x, x′) = −4πδ(x− x′). (12)

Here the factor of 4π is not really necessary, but ensures consistency with your text’s
treatment of the 3-dimensional case. The meaning of this expression is that x′ is held
fixed while taking the derivative with respect to x. It is easily shown that with this
definition of the Green’s function (22), Eq. (21) finds the electrostatic potential Φ(x) for
an arbitrary charge density ρ(x). In order to find the Green’s function which satisfies Eq.
(22), we notice that we can use two independent solutions to the homogeneous equation

∇2φi(x) = 0, (13)

where i = 1 or 2, to form

G(x, x′) =
4π

W
φ1(x<)φ2(x>). (14)

This notation means that x< should be taken as the smaller of x and x′ and x> should be
taken as the larger.
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One-dimensional Green’s function – continued

In the Green’s function expression appears W as the “Wronskian”:

W ≡ dφ1(x)

dx
φ2(x)− φ1(x)

dφ2(x)

dx
. (15)

We can check that this “recipe” works by noting that for x 6= x′, Eq. (14) satisfies the
defining equation (22) by virtue of the fact that it is equal to a product of solutions to the
homogeneous equation 13. The defining equation is singular at x = x′, but integrating
Eq. (22) over x in the neighborhood of x′ (x′ − ε < x < x′ + ε), gives the result:

dG(x, x′)

dx
cx=x′+ε −

dG(x, x′)

dx
cx=x′−ε = −4π. (16)
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One-dimensional Green’s function – continued

For example system:

In our present case, we can choose φ1(x) = x and φ2(x) = 1, so that W = 1, and the
Green’s function is as given above. For this piecewise continuous form of the Green’s
function, the integration 21 can be evaluated:

Φ(x) =
1

4πε0

{∫ x

−∞
G(x, x′)ρ(x′)dx′ +

∫ ∞

x

G(x, x′)ρ(x′)dx′
}
, (17)

which becomes

Φ(x) =
1

ε0

{∫ x

−∞
x′ρ(x′)dx′ + x

∫ ∞

x

ρ(x′)dx′
}
. (18)

Evaluating this expression, we find that we obtain the same result as given in Eq. (9). In
general, the Green’s function G(x, x′) solution (21) depends upon the boundary
conditions of the problem as well as on the charge density ρ(x). In this example, the
solution is valid for all neutral charge densities, that is

∫∞
−∞ ρ(x)dx = 0.
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Orthogonal function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {un(x)} defined in the
interval x1 ≤ x ≤ x2 such that∫ x2

x1

un(x)um(x) dx = δnm. (19)

We can show that the completeness of this functions implies that

∞∑
n=1

un(x)un(x
′) = δ(x− x′). (20)

This relation allows us to use these functions to represent a Green’s function for our
system. For the 1-dimensional Poisson equation, the Green’s function satisfies

∂2

∂x2
G(x, x′) = −4πδ(x− x′). (21)
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Orthogonal function expansions –continued

Therefore, if
d2

dx2
un(x) = −αnun(x), (22)

where {un(x)} also satisfy the appropriate boundary conditions, then we can write the
Green’s functions as

G(x, x′) = 4π
∑
n

un(x)un(x
′)

αn
. (23)
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Example

For example, consider the example discussed earlier in the interval −a ≤ x ≤ a with

ρ(x) =


0 for x < −a

−ρ0 for −a < x < 0

+ρ0 for 0 < x < a

0 for x > a

(24)

We want to solve the Poisson equation with boundary condition dΦ(−a)/dx = 0 and
dΦ(a)/dx = 0. For this purpose, we may choose

un(x) =

√
1

a
sin

(
[2n+ 1]πx

2a

)
. (25)

The Green’s function for this case as:

G(x, x′) =
4π

a

∞∑
n=0

sin
(

[2n+1]πx
2a

)
sin

(
[2n+1]πx′

2a

)
(

[2n+1]π
2a

)2 . (26)
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Example – continued

This form of the one-dimensional Green’s function only allows us to find a solution to
the Poisson equation within the interval −a ≤ x ≤ a from the integral

Φ(x) =
1

4πε0

∫ a

−a

dx′ G(x, x′)ρ(x′), . (27)

The boundary corrected full solution within the interval −a ≤ x ≤ a is given by

Φ(x) =
ρ0a

2

ε0

16
∞∑

n=0

sin
(

[2n+1]πx
2a

)
([2n+ 1]π)3

+
1

2

 . (28)

The above expansion apparently converges to the exact solution:

Φ(x) =


0 for x < −a

ρ0

2ε0
(x+ a)2 for −a < x < 0

− ρ0

2ε0
(x− a)2 + ρ0a

2

ε0
for 0 < x < a

ρ0

ε0
a2 for x > a

. (29)
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Example – continued

Φ(x) =
ρ0a

2

ε0

16
∞∑

n=0

sin
(

[2n+1]πx
2a

)
([2n+ 1]π)3

+
1

2

 . (30)
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