
Electrodynamics – PHY712

Lecture 9 – Dipole fields

Reference: Chap. 4 in J. D. Jackson’s textbook.

The dipole moment is defined by

p =

∫
d3rρ(r)r, (1)

with the corresponding potential

Φ(r) =
1

4πε0

p · r̂
r2

, (2)

and electrostatic field

E(r) =
1

4πε0

{
3r̂(p · r̂)− p

r3
− 4π

3
p δ3(r)

}
. (3)
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”Justification” of surprizing δ-function term in dipole electric field

We note that Eq. (3) is poorly defined as r → 0, and consider the value of a small
integral of E(r) about zero. (For this purpose, we are supposing that the dipole p is
located at r = 0.) In this case we will approximate

E(r ≈ 0) ≈
(∫

sphere

E(r)d3r

)
δ3(r). (4)

First we note that ∫
r≤R

E(r)d3r = −R2

∫
r=R

Φ(r)r̂dΩ. (5)
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δ-function contribution dipole electric field – continued

∫
r≤R

E(r)d3r = −R2

∫
r=R

Φ(r)r̂dΩ. (6)

s result follows from the Divergence theorm:∫
vol

∇ · Vd3r =

∫
surface

V·dA. (7)

In our case, this theorem can be used to prove Eq. (11) for each cartesian coordinate if
we choose V ≡ x̂Φ(r) for the x− component for example:∫

r≤R

∇Φ(r)d3r = x̂

∫
r≤R

∇·(x̂Φ)d3r+ŷ

∫
r≤R

∇·(ŷΦ)d3r+ẑ

∫
r≤R

∇·(ẑΦ)d3r, (8)

which is equal to∫
r=R

Φ(r)R2dΩ((x̂ · r̂)x̂+ (ŷ · r̂)ŷ + (ẑ · r̂)ẑ) =
∫
r=R

Φ(r)R2dΩr̂. (9)

Thus, ∫
r≤R

E(r)d3r = −
∫
r≤R

∇Φ(r)d3r = −R2

∫
r=R

Φ(r)r̂dΩ. (10)
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δ-function contribution dipole electric field – continued

∫
r≤R

E(r)d3r = −R2

∫
r=R

Φ(r)r̂dΩ. (11)

Now, we notice that the electrostatic potential can be determined from the charge density
ρ(r) according to:

Φ(r) =
1

4πε0

∫
d3r′

ρ(r′)

|r− r′|
=

1

4πε0

∑
lm

4π

2l + 1

∫
d3r′ρ(r′)

rl<
rl+1
>

Y ∗
lm(r̂)Ylm(r̂′).

(12)
We also note that the unit vector can be written in terms of spherical harmonic functions:

r̂ =


sin(θ) cos(φ)x̂+ sin(θ) sin(φ)ŷ + cos(θ)ẑ√

4π

3

(
Y1−1(r̂)

x̂+ iŷ√
2

+ Y11(r̂)
−x̂+ iŷ√

2
+ Y10(r̂)ẑ

)
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δ-function contribution dipole electric field – continued

Therefore, when we evaluate the integral over solid angle Ω in Eq. (11), only the l = 1

term contributes and the effect of the integration reduced to the expression:

−R2

∫
r=R

Φ(r)r̂dΩ = − 1

4πε0

4πR2

3

∫
d3r′ρ(r′)

r<
r2>

r̂′. (13)

The choice of r< and r> is a choice between the integration variable r′ and the sphere
radius R. If the sphere encloses the charge distribution ρ(r′), then r< = r′ and r> = R

so that Eq. (13) becomes

−R2

∫
r=R

Φ(r)r̂dΩ = − 1

4πε0

4πR2

3

1

R2

∫
d3r′ρ(r′)r′r̂′ ≡ − p

3ε0
. (14)

If the charge distribution ρ(r′) lies outside of the sphere, then r> = r′ and r< = R so
that Eq. (13) becomes

−R2

∫
r=R

Φ(r)r̂dΩ = − 1

4πε0

4πR2

3
R

∫
d3r′

ρ(r′)

r′2
r̂′ ≡ 4πR3

3
E(0). (15)
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