
A new approach to Monte Carlo simulations in statistical physics:
Wang-Landau sampling

D. P. Landau, Shan-Ho Tsai,a) and M. Exlerb)

Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602

~Received 15 December 2003; accepted 20 February 2004!

We describe a Monte Carlo algorithm for doing simulations in classical statistical physics in a
different way. Instead of sampling the probability distribution at a fixed temperature, a random walk
is performed in energy space to extract an estimate for the density of states. The probability can be
computed at any temperature by weighting the density of states by the appropriate Boltzmann factor.
Thermodynamic properties can be determined from suitable derivatives of the partition function
and, unlike ‘‘standard’’ methods, the free energy and entropy can also be computed directly. To
demonstrate the simplicity and power of the algorithm, we apply it to models exhibiting first-order
or second-order phase transitions. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Computer simulation now plays a major role in statistic
physics,1 particularly for the study of phase transitions a
critical phenomena, and is an important tool for teaching a
understanding thermodynamics and statistical mechan2

The reason for its importance is that all but the simpl
models are theoretically intractable, and only approxim
methods can generally be used. In particular, stochastic t
niques known as Monte Carlo~MC! simulations have proven
to be very powerful. The standard MC method, develope
half-century ago, is the Metropolis importance sampli
algorithm,3 but more recently new, more efficient algorithm
have begun to play a role in allowing simulations to achie
the resolution that is needed to accurately locate and cha
terize phase transitions.1

The motivation for these new developments is that tra
tional methods exhibit long time scales, thus requiring lo
simulations. At first-order phase transitions metastable st
appear, and critical slowing down becomes a problem at c
tinuous transitions. For spin systems, beginning with
seminal work of Swendsen and Wang,4 and extended by
Wolff,5 cluster algorithms have been used to reduce crit
slowing down. The multicanonical ensemble method6–10was
introduced to overcome the tunneling barrier between co
isting phases at first-order transitions, and has general u
for systems with a rough energy landscape.7,11,12In both situ-
ations, histogram reweighting techniques13 can be applied in
the analysis to increase the amount of information that
be gleaned from simulational data, but the applicability
reweighting is severely limited in large systems by the s
tistical quality of the wings of the histogram. This limitatio
is important in systems with competing interactions
which short-range order effects might occur over very bro
temperature ranges or give rise to frustration and produ
very complicated energy landscape, thus reducing the
ciency of standard methods.

The partition function can be expressed in terms of a d
sity of statesg(E), the number of all possible states~or
configurations! for an energy levelE of the system, but di-
rect estimation ofg(E) has not usually been the goal o
simulations. Instead, most conventional MC algorithm1
1294 Am. J. Phys.72 ~10!, October 2004 http://aapt.org/a
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such as Metropolis importance sampling and Swends
Wang cluster flipping, generate an unnormalized canon
distribution

P~E,T!5g~E!e2E/kBT ~1!

at a given temperatureT (kB denotes the Boltzmann con
stant!. Such distributions are so narrow that multiple runs a
usually needed to describe thermodynamic quantities ov
significant range of temperatures. Becauseg(E) does not
depend on the temperature, we can construct canonical
tributions at any temperature if we can estimateg(E) with
high accuracy for all energies. Onceg(E) is known, we can
calculate the partition function as

Z5 (
$configurations%

e2E/kBT5(
E

g~E!e2E/kBT, ~2!

and the model is essentially ‘‘solved,’’ because most therm
dynamic quantities can be calculated fromZ.

Although MC methods are already very powerful,1 there
has been no efficient algorithm to calculateg(E) very accu-
rately for large systems. Even for exactly solvable mode
such as the two-dimensional~2D! Ising model,g(E) cannot
be calculated exactly for large systems.14 All methods based
on accumulation of histogram entries13,15–18have the prob-
lem of scalability for large systems.

In this paper we describe a new, general, and efficient
algorithm ~generally known as the ‘‘Wang-Landau algo
rithm’’ ! that offers substantial advantages over exist
approaches.19 We will explain the algorithm in detail and
describe its application for first- and second-order phase t
sitions. Unlike conventional MC methods that directly ge
erate a canonical distributiong(E)e2E/kBT at a given tem-
perature T, this approach estimatesg(E) directly and
accurately via a random walk that produces a flat histogr
in energy space. The estimate forg(E) is improved at each
step of the random walk, using a carefully controlled mo
fication factor, to produce a result that converges to the
value quickly.

Wang-Landau sampling19 has proven to be very useful an
efficient in many different applications, including studies
complex systems with rough energy landscapes. For
ample, the method has been used in studies of a P
antiferromagnet,20 random spin systems,21 quantum
1294jp © 2004 American Association of Physics Teachers



r
t b

t
re

et
o

f
r

c
ti
r

le
id
r

um
n

om
ra
u-
a
om

s

y
te
hi
ne
ifi
e
a

t

ily
in
g

, t

b

n

-

r

at
f

m

the

of

for
d
too

ob-

ere

f
-
r of
alue
or
a

lk
e
-
m.
are

ing

on

as
tes
C

he
to-

ired
del
his
sys-
e
run

for
systems,22–24fluids,25,26 binary Lennard-Jones glass,27 liquid
crystals,28 polymers,25,29 proteins,30,31 other molecular
systems,32,33 atomic clusters,34 optimization problems,35 and
combinatorial number theory.36 Generalizations and furthe
studies of this sampling technique have been carried ou
several authors.37–41

Although the Wang-Landau method can be applied
many different types of systems, we will describe it he
only in the context of classical spin systems with discr
energy values. Therefore, when we refer to the density
statesg(E), we do not mean an actualdensity, but the num-
ber of states for a given energyE. The two simple models o
interest are the Ising model,42 which has a second-orde
phase transition, and theQ-state Potts model43 with Q58,
which undergoes a first-order phase transition.

II. THE WANG-LANDAU ALGORITHM

If we perform an unbiased random walk in energy spa
by changing the states of the spins at random and accep
all energy values thus obtained, the histogram of the ene
distribution should converge to the density of statesg(E) in
the limit of a very long random walk that visits all possib
spin configurations of the system. In practice it is forb
dingly difficult to realize such a long random walk with ou
current computer resources, given the extremely large n
ber of spin configurations. For example, the Ising model o
10310 square lattice already has 2100'1.331030 spin con-
figurations!

The Wang-Landau sampling method performs rand
walks in energy space by changing the states of spins
domly, but the energyE associated with each spin config
ration is only accepted with a probability that is proportion
to the reciprocal of the density of states. During the rand
walk, we also accumulate the histogramH(E) in energy
space, a quantity that keeps track of the number of visit
each energy levelE @each time an energyE is visited, the
corresponding entry inH(E) is incremented by 1#. The al-
gorithm modifies the estimate of the density of states b
multiplicative factorf , and uses the updated density of sta
to perform a further random walk in energy space. With t
choice of acceptance probability, each random walk ge
ates a flat histogram for the energy distribution. The mod
cation factorf is carefully controlled, and at the end of th
simulation, it should be very close to 1, which is the ide
case of the random walk with the true density of states.

At the beginning of the simulation,g(E) is unknown, and
we make an initial guess for it. The simplest approach is
setg(E)51 for all possible energiesE. The initial spin con-
figuration for the entire lattice can be chosen arbitrar
Then, a random walk in energy space is begun by form
trial states, each of which is produced by randomly pickin
spin and randomly changing its state. In general, ifE1 and
E2 are energies before and after a spin value is changed
transition probability from energyE1 to E2 is

p~E1→E2!5minS g~E1!

g~E2!
,1D . ~3!

Equation ~3! implies that if g(E2)<g(E1), the state with
energyE2 is accepted; otherwise it is accepted with a pro
ability g(E1)/g(E2) @that is, the state with energyE2 is ac-
cepted if a random number picked uniformly between 0 a
1295 Am. J. Phys., Vol. 72, No. 10, October 2004
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1 is smaller than or equal to the ratiog(E1)/g(E2)]. If the
trial state with energyE2 is accepted, we multiply the exist
ing value of g(E2) by a modification factorf .1, that is,
g(E2)→ f 3g(E2), and we update the existing entry fo
H(E2) in the energy histogram, that is,H(E2)→H(E2)
11. If the random walk rejects the trial move and remains
the same energy levelE1 , we modify the existing density o
statesg(E1) by the same modification factor; that is,g(E1)
→ f 3g(E1), and we update the existing entry forH(E1);
that is, H(E1)→H(E1)11. Becauseg(E) becomes very
large, in practice it is preferable to work with the logarith
of the density of states, so that all possible ln@g(E)# will fit
into double precision numbers. Therefore, each update of
density of states is implemented as ln@g(E)#→ln@g(E)#
1ln(f ), and the ratio of density of states in Eq.~3! is com-
puted as exp$ln@g(E1)#2ln@g(E2)#%.

A reasonable, although not necessarily optimal choice
the initial modification factor isf 5 f 05e1.2.71828, which
allows us to reach all possible energy levels quickly even
a large system. Iff 0 is too small, the random walk will spen
a very long time to reach all possible energies; however,
large a choice off 0 will lead to large statistical errors. We
proceed with the random walk in energy space until we
tain a ‘‘flat’’ histogram H(E). We typically check whether
the histogram is flat after every 10 000 MC sweeps, wh
one MC sweep corresponds to randomly pickingN spins and
thus generatingN trial states (N denotes the total number o
spins on the lattice!. When the histogram is flat, all the pos
sible energies have been roughly visited an equal numbe
times, and the density of states converges to the true v
with an accuracy proportional to the modification fact
ln(f ). We then reduce the modification factor by using
function such asf 15Af 0, reset the histogram toH(E)50
for all values ofE, and begin the next level random wa
during which we modify the density of states with th
smaller modification factorf 1 for each step. Each level ran
dom walk is referred to as one iteration in the algorith
Note that the spin configuration and the density of states
never reset during the simulation. We continue perform
the random walk until the histogramH(E) is flat again, and
then we reduce the modification factorf i 115Af i , reset the
histogram toH(E)50 for all values ofE, and restart the
random walk. We stop the simulation when the modificati
factor is smaller than a predefined value~such as f final

5exp(1028).1.000 000 01). The modification factor acts
a control parameter for the accuracy of the density of sta
during the simulation and also determines how many M
sweeps are necessary for the whole simulation.

It is impossible to obtain a perfectly flat histogram and t
phrase ‘‘flat histogram’’ in this paper means that the his
gram H(E) for all possibleE is not less thanx% of the
average histogram̂H(E)&, wherex% is chosen according
to the size and complexity of the system and the des
accuracy of the density of states. For the 2D Ising mo
with only nearest-neighbor couplings on small lattices, t
percentage can be chosen as high as 95%, but for large
tems the criterion for ‘‘flatness’’ may never be satisfied if w
choose too high a percentage, and the program might
forever.

Clearly, one essential constraint is thatg(E) should con-
verge to the true value. The accuracy of the estimate
1295D. P. Landau, Shan-Ho Tsai, and M. Exler
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g(E) is proportional to ln(f ) at that iteration. However
ln(ffinal) cannot be chosen arbitrarily small or the modifi
ln@g(E)# will not differ from the unmodified one to within the
number of digits in the double precision numbers used in
simulation. If this happens, the algorithm no longer co
verges to the true value, and the program may run foreve
f final is within the double precision range but is too small, t
calculation might take excessively long to finish.

A simple recipe for reducing the modification factor is
take a square-root function, andf approaches 1 as the num
ber of iterations approaches infinity.~There is no reason why
any function cannot be used as long as it decreasesf mono-
tonically to 1. A simple and efficient formula isf i 115 f i

1/n ,
wheren.1. The value ofn can be chosen according to th
available CPU time and the expected accuracy of the si
lation. For the systems that have been studied, the choic
n52 yields good accuracy in a relatively short time, even
large systems.!

For the initial modification factor ln(f0)51 and the final
factor ln(ffinal)51028, the total number of iterations is 27
We do not set a predetermined number of MC sweeps
each iteration, but rather let the program check periodic
whether the established criterion for a flat histogram is s
isfied. Generally, the number of MC sweeps needed to sa
the criterion increases as we reduce the modification fac
but we cannot predict the exact number of MC swee
needed for each iteration before the simulation. It is pre
able to allow the program to decide how much simulatio
effort is needed for a given modification factorf i . Nonethe-
less, we need to perform some test runs to make sure tha
program will finish within a given time.

The simulation method can be further enhanced by p
forming multiple random walks, each for a different range
energy, either serially or in parallel. We can restrict the r
dom walk to remain in the range by rejecting any move
of that range.19,41 The resultant parts of the density of stat
can then be joined together.

During the random walk~especially in the early itera
tions!, the algorithm does not satisfy the detailed balan
condition exactly, becauseg(E) is modified constantly dur-
ing the random walk. After many iterations, however,g(E)
converges to the true value as the modification factor
proaches 1. Ifp(E1→E2) is the transition probability from
energyE1 to energyE2 , the ratio of the transition probabili
ties fromE1 to E2 and fromE2 to E1 can be calculated very
easily as

p~E1→E2!

p~E2→E1!
5

g~E1!

g~E2!
, ~4!

where we have used Eq.~3!. In other words, the random
walk algorithm satisfies the detailed balance:

1

g~E1!
p~E1→E2!5

1

g~E2!
p~E2→E1!, ~5!

where 1/g(E1) is the probability at the energyE1 and
p(E1→E2) is the transition probability fromE1 to E2 . We
conclude that the detailed balance condition is satisfied w
accuracy proportional to the modification factor ln(f ).

Almost all recursive methods update the density of sta
by using the histogram data directly, and only after enou
histogram entries are accumulated.6,9,11,44–51Because of the
1296 Am. J. Phys., Vol. 72, No. 10, October 2004
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exponential growth of the density of states in energy spa
this process is inefficient because the histogram is accu
lated linearly. Instead, in Wang-Landau sampling we mod
g(E) at each step of the random walk, and this modificat
allows us to approach the true distribution much faster th
conventional methods, especially for large systems.~We also
accumulate histogram entries during the random walk,
we only use them to check whether the histogram is
enough to go to the next level random walk.!

Although the total number of configurations increases
ponentially with the size of the system, the total number
possible energies increases linearly with the size of syst
so it is easy to calculateg(E) with a random walk in energy
space for a large system. Consider, for example, aQ-state
Potts model on aL3L lattice with nearest-neighbo
interactions.43 For Q>3, the number of possible energies
about 2N, whereN5L2 is the total number of the lattice
sites. However, the average number of possible states
each energy level is as large asQN/2N, whereQN is the total
number of possible configurations of the system. This la
number is why we cannot simply use a computer to rea
all possible states and why efficient and fast algorithms
required.

At the end of the simulation, the Wang-Landau algorith
provides only a relative density of states for different en
gies. To extract the correct density of statesgn(E) for the
Q-state Potts model, we can either use the fact that the t
number of possible states is(Egn(E)5QN, or that the num-
ber of ground states~whereE522N) is Q. By using the
former rescaling condition, the correct normalized density
statesgn(E) can be obtained from the simulation datag(E),
by the relation ln@gn(E)#5ln@g(E)#2ln@(Eg(E)#1N ln(Q),
whereas the latter condition leads us to use ln@gn(E)#
5ln@g(E)#2ln@g(E522N)#1ln(Q). For simplicity, we will
denote the normalized density of states simply asg(E) in the
following. The latter normalization guarantees the accura
of the density of states at low energy levels, which is imp
tant in the calculation of thermodynamic quantities at lo
temperature. With this normalization, whenT50, we can
obtain exact solutions for the internal energy, entropy, a
free energy when we calculate these quantities from the d
sity of states. If we apply the normalization that the to
number of states isQN, we cannot guarantee the accuracy
g(E) for energies at or near the ground state, because
rescaling factor is dominated by the maximum density
states. We can use one of these two normalizations to ob
the absolute density of states, and use the other norma
tion to check the accuracy of the result.

One of the advantages of the Wang-Landau method is
the density of states does not depend on the temperature
example, the internal energyU(T) can be calculated by

U~T!5
(EEg~E!e2E/kBT

(Eg~E!e2E/kBT [^E&, ~6!

and the specific heatC(T) can be determined from the fluc
tuations in the internal energy

C~T!5
]U~T!

]T
5

^E2&2^E&2

kBT2 . ~7!

We can also access some quantities, such as the Helm
free energy and entropy, that are not directly available fr
1296D. P. Landau, Shan-Ho Tsai, and M. Exler
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conventional MC simulations. For example, by using co
ventional MC methods the entropy can be estimated by i
grating over other thermodynamic quantities, such as
specific heat, but the result is not always reliable because
specific heat itself is not easy to accurately determine,
ticularly considering its divergence at a phase transiti
However, the free energyF(T) can be calculated directly
from the partition functionZ using

F~T!52kBT ln~Z!52kBT lnS (
E

g~E!e2E/kBTD , ~8!

and the entropy can then be easily computed by

S~T!5
U~T!2F~T!

T
. ~9!

We point out that even for relatively small lattices, th
partition function may be too large to fit into a double pr
cision number, in which case it cannot be easily compute
practice. Nevertheless, the thermodynamic quantities
still be readily computed if we note that

(
E

X~E!g~E!e2E/kBT5el(
E

X~E!eln[g(E)] 2E/kBT2l,

~10!

whereX(E) is a general function ofE and l is the largest
exponent, ln@g(E)#2E/kBT. The summation on the right-han
side of Eq.~10! can be computed and the factorel does not
have to be evaluated. Because this factor appears in the
merator and the denominator of Eq.~6!, it cancels. This can-
cellation also occurs in the evaluation of the specific he
The free energy, which is proportional to thelogarithmof the
partition function, can also be computed without evaluat
el explicitly.

Statistical errors in the thermodynamic quantities can
estimated by repeating the simulation several times us
different random number sequences, and then computing
averages and fluctuations in these quantities.

With the histogram reweighting method,13 it is possible to
use simulational data at specific temperatures to obtain c
plete thermodynamic information near, or between, th
temperatures. Unfortunately, it is usually quite difficult
obtain accurate information in the region far away from t
simulated temperature due to difficulties in obtaining go
statistics, especially for large systems where the canon
distributions are very narrow. With Wang-Landau samplin
the histogram is ‘‘flat,’’ and we have essentially the sam
statistics for all energy levels. Because the output of
simulation is the density of states, which does not depend
the temperature, we can then calculate most thermodyna
quantities at any temperature without repeating the sim
tion. The algorithm is especially useful for obtaining therm
dynamic information at low temperatures, or at the transit
temperature where the conventional MC algorithm is not
efficient.

III. APPLICATION TO A SECOND-ORDER PHASE
TRANSITION

Wang-Landau sampling is very efficient for the study
second-order phase transitions, because it sidesteps cr
slowing down at the critical temperatureTc and the slow
dynamics at low temperature. To check the accuracy
convergence of the method, we apply it to the 2D ferrom
1297 Am. J. Phys., Vol. 72, No. 10, October 2004
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netic Ising model42 with nearest-neighbor interactions on
L3L square lattice with periodic boundary conditions. Ea
of the N5L2 lattice sitesi has a spin denoted ass i , which
can assume the valuess i511 for spin up ands i521 for
spin down. The interaction Hamiltonian is given by

H52(
^ i , j &

s is j , ~11!

where^ i , j & denotes distinct pairs of nearest-neighbor sit
the number of energies for this system isN21 for evenL.
This model provides an ideal benchmark for ne
algorithms,13,52 and is also an ideal laboratory for testin
theory,14,53 because this model can be solved exactly.

With the exact solution for the partition function on finite
size systems,54 and the expansion of the expression by Ma
ematica, the density of states for the Ising model on a squ
lattice can be obtained exactly.14 Beale14 obtained the exac
density of states up toL532, and using Beale’s program
Wang and Landau19 were able to computeg(E) for L550.
In this paper we show results forL516, but Wang-Landau
sampling has been used to determineg(E) for lattices up to
L5256 for which there is currently no exact solution.19

The estimate of the density of states forL516 using
Wang-Landau sampling is shown in Fig. 1, along with t
exact results by Beale.14 The initial and final modification
factors for the random walks were ln(f0)51 and ln(ffinal)
51028. The histogramH(E) was considered flat when a
entries were not less than 80% of the average^H(E)&. The
absolute density of states in Fig. 1 is obtained by the con
tion that the number of ground states is 2 for the 2D Is
model. With the logarithmic scale used in Fig. 1, the sim
lational data and exact solution overlap perfectly with ea
other. In the inset of Fig. 1, we show the relative error«,
which is defined by the ratio between the error of the sim
lational data and exact values for any quantityX as

«~X![
uXsim2Xexactu

Xexact
. ~12!

We see that«@ ln(g)# is smaller than 0.2% for most of th
region.

Fig. 1. Logarithm of the density of states, ln@g(E)#, of the 2D Ising model
for L516. The relative errors of the simulational densities of states
shown in the inset.
1297D. P. Landau, Shan-Ho Tsai, and M. Exler
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We can calculate the canonical distribution using Eq.~1! at
essentially any temperature without performing multip
simulations. In Fig. 2 we show the resultant canonical dis
bution at the critical temperatureTc , which exhibits a single
peak. The distributions at temperatures above and belowTc
are also single peaked, as illustrated in the inset of Fig.

It is also important to study the influence of the errors
the density of states on the calculated thermodynamic qu
tities. In Fig. 3 we show the internal energy, the specific he
the Helmholtz free energy, and the entropy as a function
temperature forL516. Both the simulational results com
puted with Eqs.~6!–~9!, and the exact solutions are plotte
and overlap almost perfectly over a wide temperature reg
from kBT50 – 8. Because no difference is visible in the
figures, more stringent tests of the accuracy are provided

Fig. 2. The canonical distribution at the transition temperatureP(E,Tc)
5g(E)e2E/kBTc for the L516 Ising model. The inset shows the canonic
distribution at a temperature slightly above and belowTc for the same
system.
1298 Am. J. Phys., Vol. 72, No. 10, October 2004
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the insets, which show the relative errors for the respec
thermodynamic quantities. The relative errors are quite sm
for the entire temperature region fromkBT50 – 8.

Note that because the system has a second-order p
transition, the first derivative of the free energy is a contin
ous function of temperature. There are no jumps in either
internal energy or the entropy even in the limit as the syst
size goes to infinity.

The random number generator used in our simulation w
a shift-register algorithm denoted as R1279.1 The average
number of visits to each energy for the entire duration of
simulation~adding the average number of visits for all iter
tions! was roughly 106. The CPU time of the simulation to
obtain the density of states shown in Fig. 1 was less tha
min using a GNU compiler on a Pentium 4~1.3 GHz! pro-
cessor.

IV. APPLICATION TO A FIRST-ORDER PHASE
TRANSITION

In this section, we apply the algorithm to a model with
first-order phase transition.55,56 In such cases, the interna
energy and the entropy have discontinuities at the transit
at which both ordered and disordered states coexist. We
sider the 2DQ58 Potts model43 on L3L square lattices
with nearest-neighbor interactions and periodic bound
conditions. The total number of spins isN5L2, and the
Hamiltonian can be written as

H52(
^ i , j &

d~qi ,qj !, ~13!

where qi51,2,...Q denotes the Potts spin at sitei and
d(qi ,qj ) is a Kronecker delta. During the simulation, w
select lattice sites randomly and choose integers betw
@1,Q# randomly for new Potts spin values. The modificati
lutions
Fig. 3. Thermodynamic quantities for theL516 2D Ising model calculated from the density of states. The relative errors with respect to the exact so
by Ferdinand and Fisher54 are shown in the insets:~a! internal energy,~b! specific heat,~c! Helmholtz free energy, and~d! entropy.
1298D. P. Landau, Shan-Ho Tsai, and M. Exler
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factor ln(fi) changes from ln(f0)51 at the beginning, to
ln(ffinal)51028 by the end of the random walks. The hist
gram of energyH(E) is considered flat when all entries a
not less than 80% of the average^H(E)&. To guarantee the
accuracy of thermodynamic quantities at low temperatu
we use the condition that the number of the ground state
Q58 to normalize the density of states. The densities
states forL58, 12, and 16 lattices are shown in Fig. 4. W
see that the maximum density of states from our data foL
516 is very close toe530, which is about 1.5310230.

In Fig. 5 we show the double-peaked canonical probabi
distribution56 at the transition temperatureTc for the first-
order transition, computed from the simulational data us
Eq. ~1!. The ‘‘transition temperature’’kBTc(L) is approxi-
mately 0.7519 forL516 and is the temperature where t
double peaks are of the same height. The transition temp
ture for the infinite lattice is known exactly to bekBTc

51/ln(11AQ)'0.7449.43 The valley between the two peak
is approximately 0.37 forL516, and becomes deeper asL
increases. The latent heat for this temperature-driven fi
order phase transition can be estimated from the energy

Fig. 4. Logarithm of the density of statesg(E) for the 2DQ58 Potts model
as a function of energy per lattice site,E/N, for L58, 12, and 16. With the
scale in the figure, the errors of the simulational data are within the widt
the lines.

Fig. 5. The canonical distribution at the transition temperatureP(E,Tc)
5g(E)e2E/kBTc for the Q58 Potts model forL516. The inset shows the
canonical distribution at a temperature slightly above and belowTc for the
same system.
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ference between the double peaks. WhenT is slightly away
from Tc , one of the double peaks increases dramatically
magnitude and the other decreases as shown in the ins
Fig. 5.

Because of the double-peaked structure at a first-o
phase transition, conventional MC simulations are not e
cient because an extremely long time is required for the s
tem to travel from one peak to the other in energy spa
With the Wang-Landau algorithm, all possible energy lev
are visited with equal probability, so it overcomes the barr
between the coexisting phases in the conventional MC si
lations. The final flat histogram forL516 is shown in Fig. 6,
and it describes the total number of visits to each ene
level for the random walk of the last iteration.

Figure 7 illustrates some thermodynamic quantities cal
lated from the density of states using Eqs.~6!–~9!. Near the
transition temperatureTc , the internal energy, shown in Fig
7~a!, has a steplike change that becomes sharper as the la
size increases and transforms into a discontinuous ju
when the system size goes to infinity. The magnitude of t
jump @shown in Fig. 7~a! for an infinite lattice# equals the
latent heat for the phase transition.

The specific heat, shown in Fig. 7~b!, has a peak in the
vicinity of Tc , and both the maximum value and the positi
of the peak depend on the finite size of the lattice. AsL
increases, the peak in the specific heat becomes narrowe
goes to a delta function in the thermodynamic limit.

Our results for the Helmholtz free energy per lattice s
are shown in Fig. 7~c! as a function of temperature. Becau
the transition is of first-order, the first derivative of the fre
energy has a discontinuity atTc . ~The location of this dis-
continuity can be used as an estimate ofTc .)

Like the internal energy, the entropy shown in Fig. 7~d!
has a steplike change nearTc . This change becomes sharp
as L increases and becomes a discontinuous jump wheL
→`. Because the jump in the internal energy equals
latent heat of the phase transition, and the free energ
continuous atTc , the magnitude of the jump in the entrop
equals the latent heat divided byTc @see Eq.~9!#.

V. RANDOM WALK IN ENERGY AND ORDER
PARAMETER SPACE

To study the effect of an applied magnetic field on t
Ising and Potts models, we have to perform a random w

f

Fig. 6. Final histogram of energy for the last iteration of random walks
estimate the density of states of aQ58 Potts model forL516.
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Fig. 7. Thermodynamic quantities calculated from the density of states for theQ58 Potts model forL54, 8, and 16:~a! internal energy,~b! specific heat,~c!
Helmholtz free energy, and~d! entropy.
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in both the energy and order parameter space. 2D ran
walks may also be required to study systems with more c
plex orders, such as a three-dimensional spin glass mo
even in the absence of external fields.

To illustrate a simple case where a 2D random walk
required, we consider the 2D Ising model in the presenc
an external magnetic fieldh. The Hamiltonian is given by

H52(
^ i , j &

s is j2h(
i 51

N

s i . ~14!

The order parameter is the magnetization, defined asM 8
5( i 51

N s i , and we denote the exchange energy asE8
52(^ i , j &s is j . The algorithm works as before, except th
the random walk is now performed in both the energyE8 and
the order parameterM 8, and a 2D histogramH(E8,M 8) is
accumulated.

With the estimate of the density of statesg(E8,M 8), the
partition function can be computed as

Z~T,h!5 (
E8,M8

g~E8,M 8!e2(E82hM8)/kBT. ~15!

From the partition function we can obtain thermodynam
quantities for all values of the temperature and magn
field. For example, the mean magnetization of the system
be computed as

M ~T,h!5
(E8,M8M 8g~E8,M 8!e2(E82hM8)/kBT

(E8,M8g~E8,M 8!e2(E82hM8)/kBT
. ~16!

M (T,h) is shown in Fig. 8 as a function of the extern
magnetic fieldh, for different values of the temperatureT.
Note that for fixedT,Tc the Ising model has a first-orde
phase transition ath50. Standard MC methods genera
hysteresis in the magnetization curve at lowT ~shown as the
solid line in Fig. 8!, because of metastable states that app
1300 Am. J. Phys., Vol. 72, No. 10, October 2004
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near first-order phase transitions. This metastability hind
studies of first-order phase transitions using standard
methods.

VI. DISCUSSION AND CONCLUSION

We have described an efficient algorithm to calculate
density of states directly for large systems. By modifying t
estimate at each step of the random walk in energy space
carefully controlling the modification factor, we can dete
mine the density of states very accurately. Using the den
of states, we can then calculate thermodynamic quantitie
essentially any temperature. An important advantage of
approach is that we can also calculate the Helmholtz f
energy and entropy, quantities that are not directly availa

Fig. 8. Magnetization per site for theL516 Ising model as a function of
applied field forT51.0/kB,Tc ~circle!, T52.3/kB'Tc ~upright triangle!,
T53.0/kB.Tc ~inverted triangle! obtained with Wang-Landau sampling
and the hysteresis curve obtained with the Metropolis algorithm aT
51.0/kB ~solid line!. The dotted line is a guide to the eye.
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n-
from conventional MC simulations. The method is applica
to a wide range of systems and is easy to implement.
though we have described its implementation in terms
single spin-flip sampling, it is straightforward to use oth
types of sampling for cases in which it will further accelera
the simulation.

Applications to the 2DQ58 Potts model and to the 2D
Ising model show that the method is effective for syste
that exhibit first-order or second-order phase transitions.
presentation concentrated on the random walk in ene
space~and order-parameter space!; however, the idea is very
general and can be applied to any parameters. The en
levels of the models treated here are discrete, and the
number of possible energies is known before the simulat
but in general such information is not available. For mod
where all the possible energy levels cannot be fitted in
computer memory or the energy is continuous, for exam
the Heisenberg model, we must bin the energy. Statist
and systematic errors in the density of states, and thus o
thermodynamic quantities, are controlled by the flatness
the histogram at the end of each iteration and the final m
fication factorf final . These errors can be decreased by req
ing a more strict condition for a flat histogram and by usi
a ln(ffinal) that is closer to zero.

In this paper, we only applied the Wang-Landau algorith
to simple models on small lattices, but the method is a
efficient for large systems and has proven to be useful in
studies of general, complex systems with rough landsca
~see references given in Sec. I!. However, more investigation
is needed to better determine under which circumstan
the method offers substantial advantages over o
approaches.57
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