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We describe a Monte Carlo algorithm for doing simulations in classical statistical physics in a
different way. Instead of sampling the probability distribution at a fixed temperature, a random walk
is performed in energy space to extract an estimate for the density of states. The probability can be
computed at any temperature by weighting the density of states by the appropriate Boltzmann factor.
Thermodynamic properties can be determined from suitable derivatives of the partition function
and, unlike “standard” methods, the free energy and entropy can also be computed directly. To
demonstrate the simplicity and power of the algorithm, we apply it to models exhibiting first-order
or second-order phase transitions. 2G04 American Association of Physics Teachers.
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[. INTRODUCTION such as Metropolis importance sampling and Swendsen-
Wang cluster flipping, generate an unnormalized canonical

Computer simulation now plays a major role in statisticaldistribution
physics% particularly for the study of phase transitions and P(E,T)=g(E)e F/keT (1
critical phenomena, and is an important tool for teaching and )
understanding thermodynamics and statistical mech&nicsat @ given temperaturg (kg denotes the Boltzmann con-
The reason for its importance is that all but the simplestSta”)- Such dlstrlbutlons_are SO narrow tha_t multlplfe_runs are
models are theoretically intractable, and only approximaté!Sually needed to describe thermodynamic quantities over a
methods can generally be used. In particular, stochastic tecfidnificant range of temperatures. Becagt&) does not
niques known as Monte CarldIC) simulations have proven d€Pend on the temperature, we can construct canonical dis-
to be very powerful. The standard MC method, developed &/Putions at any temperature if we can estimg(&) with
half-century ago, is the Metropolis importance samplingigh accuracy for all energies. Ong¢E) is known, we can
algorithm? but more recently new, more efficient algorithms c/culate the partition function as
have begun to play a role in allowing simulations to achieve
the resolution that is needed to accurately locate and charac- Z=
terize phase transitiorts.

The motivation for these new developments is that tradi-and the model is essentially “solved,” because most thermo-
tional methods exhibit long time scales, thus requiring longdynamic quantities can be calculated fr@m
simulations. At first-order phase transitions metastable states Although MC methods are already very powerfithere
appear, and critical slowing down becomes a problem at corlas been no efficient algorithm to calculatgE) very accu-
tinuous transitions. For spin systems, beginning with theately for large systems. Even for exactly solvable models,
seminal work of Swendsen and Wah@nd extended by such as the two-dimensionéD) Ising model,g(E) cannot
Wolff,5 cluster algorithms have been used to reduce criticabe calculated exactly for large systeffisll methods based
slowing down. The multicanonical ensemble mefid@was ~ On accumulation of histogram entrtés®~**have the prob-
introduced to overcome the tunneling barrier between coexem of scalability for large systems. N
isting phases at first-order transitions, and has general utility !N this paper we describe a new, general, and efficient MC
for systems with a rough energy landscape’?In both situ- ~ lgorithm (generally known as the “Wang-Landau algo-
ations, histogram reweighting technigiiesan be applied in rithm”) that offers substantial advantages over existing

9 . . . . .
the analysis to increase the amount of information that Ca@ppro%chfé. WT. Wt'." e>f<pla]}!n tthe glgonthg] md deti" antd
be gleaned from simulational data, but the applicability of2€SCM0€ IS application for irst- and second-order pnase tran-

reweighting is severely limited in large systems by the sta>tonS: Unlike conventional MC me én(gg Sa;[h;tg?\'/;erftgrg_en'

tistical quality of the wings of the histogram. This limitation erat(-i a c_?notr;:_cal d|str|bu'ﬂog(Et_)e tea(E) directl d
is important in systems with competing interactions forPerature 1, tnis approach estima eg(E) directly an

which short-range order effects might occur over very broad"‘ccuraltEIy via a random \_Nalk that prngces a flat histogram
temperature ranges or give rise to frustration and produce '§ €N€ray space. The estimate ) is improved at each

very complicated energy landscape, thus reducing the eff 2, 1 8 T L 8] B S e e rea
ciency of standard methods. op 9

- : . value quickly.
The partition function can be expressed in terms of a den- Wang-Landau samplif§has proven to be very useful and

sity of statesg(E), the number of all possible statéer  eficient in many different applications, including studies of
configurations for an energy leveE of the system, but di- complex systems with rough energy landscapes. For ex-
rect estimation ofg(E) has not usually been the goal of ample, the method has been used in studies of a Potts
simulations. Instead, most conventional MC algoritdms, antiferromagnet® random spin systenfs, quantum

efE/kBTZE g(E)efE/kBT7 2
E

{configurationy
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system§§‘24fluids,25*2:kzjgnary Lennard-Jones gla&Sliquid 1 is smaller than or equal to the ratigE,)/g(E,)]. If the
crystalsz,23 olymers> proteins, == other molgcular trial state with energy, is accepted, we multiply the exist-
systems>**atomic clusters;' optimization problems? and ing value ofg(E,) by a modification factorf>1, that is,
combinatorial number theory. Generalizations and further (E,)—fxg(E,), and we update the existing entry for
(E,) in the energy histogram, that i${(E,)—H(E))

studies of thisrggaz?pling technique have been carried out b,
veral authors'™ . . ;
severa autno + 1. If the random walk rejects the trial move and remains at

Although the Wang-Landau method can be applied to ) . .
many different types of systems, we will describe it hereth® same energy levél,, we modify the existing density of

only in the context of classical spin systems with discretestatesy(E;) by the same modification factor; that H(E;)
energy values. Therefore, when we refer to the density of-fXxg(E;), and we update the existing entry fbi(E,);
statesg(E), we do not mean an actudénsity but the num-  that is, H(E;)—H(E,) + 1. Becauseg(E) becomes very
ber of states for a given ener@ The two simple models of large, in practice it is preferable to work with the logarithm
interest are the Ising mod&, which has a second-order of the density of states, so that all possiblgg(i)] will fit
phase transition, and th@-state Potts mod& with Q=8, into double precision numbers. Therefore, each update of the

which undergoes a first-order phase transition. density of states is implemented as[dfE)]—In[g(E)]
+In(f), and the ratio of density of states in E&) is com-
IIl. THE WANG-LANDAU ALGORITHM puted as expin[g(Ey)1—IN[g(E,)1}.

A reasonable, although not necessarily optimal choice of

If we perform an unbiased random walk in energy Spacéhe initial modification factor i§:f029122.71828, which
by changing the states of the spins at random and acceptir@jlows us to reach all possible energy levels quickly even for
all energy values thus obtained, the histogram of the energg large system. If is too small, the random walk will spend
distribution should converge to the density of stajég) in  a very long time to reach all possible energies; however, too
the limit of a very long random walk that visits all possible large a choice of, will lead to large statistical errors. We
spin configurations of the system. In practice it is forbid- proceed with the random walk in energy space until we ob-
dingly difficult to realize such a long random walk with our tain a “flat” histogram H(E). We typically check whether
current computer resources, given the extremely large nunthe histogram is flat after every 10000 MC sweeps, where
ber of spin configu_rations. For example, the Ising _model 0N ®ne MC sweep corresponds to randomly pickiingpins and
10X10 square lattice already has’=1.3x 10 spin con-  thus generating\ trial states [ denotes the total number of
figurations! ) spins on the lattice When the histogram is flat, all the pos-

The Wang-Landau sampling method performs randomiple energies have been roughly visited an equal number of
walks in energy space by changing the states of spins rafmes, and the density of states converges to the true value
domly, but the energ¥ associated with each spin configu- with an accuracy proportional to the modification factor
ration is only accepted with a probability that is proportional|n(f). We then reduce the modification factor by using a

to the reciprocal of the density of states. During the ra”don?unction such ag,=/f,, reset the histogram tbl(E)=0
walk, we also accumulate the histograd(E) in energy for all values ofE, and begin the next level random walk

space, a quantity that keeps track of the number of visits a&uring which we modify the density of states with the

each energ_y level [g;_lchEtme_ an energEd|sb V'S't_ﬁ?’ thle smaller modification factof, for each step. Each level ran-
corresponding entry it (E) is incremented by L The al- o0 walk is referred to as one iteration in the algorithm.

gorithm modifies the estimate of the density of states by §yote that the spin configuration and the density of states are
multiplicative factorf, and uses the updated density of states,ayer reset during the simulation. We continue performing

to perform a further random walk in energy space. With thisiha random walk until the histograk(E) is flat again, and

choice of acceptance probability, each random walk gener; e _
ates a flat histogram for the energy distribution. The modifi—then we reduce the modification factr, , = vi;, reset the
histogram toH(E)=0 for all values ofE, and restart the

cation factorf is carefully controlled, and at the end of the : . e
simulation, it should be very close to 1, which is the ideal"@ndom walk. We stop the simulation when the modification
factor is smaller than a predefined valgsuch asfgy

case of the random walk with the true density of states. 5 | VAR
At the beginning of the simulatiom(E) is unknown, and =exp(10 °)=1.00000001). The modification fact.or acts as
we make an initial guess for it. The simplest approach is t& cpntrol parameter for the accuracy of.the density of states
setg(E) =1 for all possible energiei. The initial spin con- during the simulation and also determlnes _how many MC
figuration for the entire lattice can be chosen arbitrarily.Swefap_S are necessary fqr the whole S|mulgtlon.
Then, a random walk in energy space is begun by formin Itis |r'r3poss[ble to obfa}ln a.perfectly flat histogram and_ the
trial states, each of which is produced by randomly picking &hrase “flat histogram” in this paper means ”:)at the histo-
spin and randomly changing its state. In generak jfand gram H(E) for all possibleE is not less tharx% of the

E, are energies before and after a spin value is changed, t@é/erage.histogramH(E)%_ wherex% is chosen according
transition probability from energg, to E, is to the size and complexity of the system and the desired

accuracy of the density of states. For the 2D Ising model
C[9(Ey) with only nearest-neighbor couplings on small lattices, this
P(E1— E2)=mln(m,1>- ) percentage can be chosen as high as 95%, but for large sys-
2 tems the criterion for “flathess” may never be satisfied if we
Equation (3) implies that if g(E;)<g(E,), the state with choose too high a percentage, and the program might run
energyE, is accepted; otherwise it is accepted with a prob-forever.
ability g(E;)/g(E,) [that is, the state with enerdy, is ac- Clearly, one essential constraint is tiigE) should con-
cepted if a random number picked uniformly between 0 andrerge to the true value. The accuracy of the estimate for
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g(E) is proportional to In{) at that iteration. However, exponential growth of the density of states in energy space,
In(fsina) Cannot be chosen arbitrarily small or the modified;‘h'S dplr_ocesis 'SI mefﬁgle_ntvsecauLse Lhe h|stog|r_am IS aCCLéF“U'
In[g(E)] will not differ from the unmodified one to within the atg Inear % ”Steaf ’h'“ agg' an Ii“ Sa(;m;].'“g Wg.fmo lity
number of digits in the double precision numbers used in th@(E) at each step of the ran om walk, and this modification
simulation. If this happens, the algorithm no longer con-allows us to approach the true distribution much faster than
verges to the true value, and the program may run forever. |(Fonvent:o?alhm(tethods, esggmal(ljy for Iiﬁle sysée(Mte alﬁ(o but
finas IS Within the double precision range but is too small, the2cCUMU'ate nistogram entries during the random walk, ou
calculation might take excessively long to finish. we only use them to check whether the histogram is flat

A simple recipe for reducing the modification factor is to enough t0 go to the next level randc_)m Wa?lk' .
) Although the total number of configurations increases ex-
take a square-root function, afidapproaches 1 as the num-

ber of iterat hes infinithere | h ponentially with the size of the system, the total number of
er ot iterations approaches in inithere IS ho reason why possible energies increases linearly with the size of system,
any function cannot be used as long as it decrebsaeno-

: . . ; n so it is easy to calculatg(E) with a random walk in energy
tonically to 1. A simple and efficient formula 5, ,=f;"",

_ space for a large system. Consider, for exampl€-state
wheren>1. The value ofn can be chosen according to the Potts model on alLXL lattice with nearest-neighbor

available CPU time and the expected accuracy of the simu
lation. For the systems that have been studied, the choice
n=2 yields good accuracy in a relatively short time, even for
large systems.

'rg;eractions‘i?‘ For Q= 3, the number of possible energies is
out N, whereN=L? is the total number of the lattice
sites. However, the average number of possible states for
e e _ , each energy level is as large@8/2N, whereQN is the total

f For lth? 'n'tflllcrp%d'f'ﬁauon lfactorblrf())—fll and. the T'ng; number of possible configurations of the system. This large
actor In(fsina) =10"", the total number of iterations is 27. \mper js why we cannot simply use a computer to realize

We do not set a predetermined number of MC sweeps fog| hossible states and why efficient and fast algorithms are
each iteration, but rather let the program check penodlcallyfequired'

whether the established criterion for a flat histogram is sat- At the end of the simulation, the Wang-Landau algorithm

iiﬁed._Ge_nerglly, the number of l\éIC SWﬁepS ng_(?_deq to ?atis rovides only a relative density of states for different ener-
the criterion increases as we reduce the modification factofyins To extract the correct density of stategE) for the

but we cannot predict the exact number of MC sweep .
needed for each iteration before the simulation. It is prefer- “state Potts model, we can either use the fact that the total

able to allow the program to decide how much simulational™uMPer of possible states¥g(E) =Q", or that the num-
effort is needed for a given modification facthr. Nonethe- ~ P€r Of ground stateswhereE=—2N) is Q. By using the
less, we need to perform some test runs to make sure that tfgfMmer rescaling condition, the correct normalized density of
program will finish within a given time. stategg,(E) can be obtained from the simulation daftE),

The simulation method can be further enhanced by pey the relation 1pgy(E)]=In[g(E)]—In[Zeg(E)]+NIn(Q),
forming multiple random walks, each for a different range ofwhereas the latter condition leads us to us@gi)]
energy, either serially or in parallel. We can restrict the ran=In[g(E)]—In[g(E=—2N)]+In(Q). For simplicity, we will
dom walk to remain in the range by rejecting any move outdenote the normalized density of states simplg@B) in the
of that range?*! The resultant parts of the density of statesfollowing. The latter normalization guarantees the accuracy
can then be joined together. of the density of states at low energy levels, which is impor-

During the random walk(especially in the early itera- tant in the calculation of thermodynamic quantities at low
tions), the algorithm does not satisfy the detailed balanceemperature. With this normalization, whé@n=0, we can
condition exactly, becausg(E) is modified constantly dur- obtain exact solutions for the internal energy, entropy, and
ing the random walk. After many iterations, howevg(E) free energy when we calculate these quantities from the den-
converges to the true value as the modification factor apsity of states. If we apply the normalization that the total
proaches 1. lfo(E;—E,) is the transition probability from number of states i\, we cannot guarantee the accuracy of
energyE, to energyE,, the ratio of the transition probabili- g(E) for energies at or near the ground state, because the
ties fromE; to E, and fromE, to E; can be calculated very rescaling factor is dominated by the maximum density of
easily as states. We can use one of these two normalizations to obtain

the absolute density of states, and use the other normaliza-

P(Ei—Ez)  g(Ey) 4  tion to check the accuracy of the result.
p(E,—E;)  g(Ey)’ @ One of the advantages of the Wang-Landau method is that
the density of states does not depend on the temperature. For

where we have used E@3). In other words, the random example, the internal enerdy(T) can be calculated by
walk algorithm satisfies the detailed balance:

SeEg(E)e &’
1 ! U(TM)= <= e =(E), (6)
g(El) p(E1_> EZ)_ g(E2) p(E2_> El)7 (5) EEg(E)e
where 1¢(E;) is the probability at the energ¥,; and
p(E;—E,) is the transition probability fronk; to E,. We
conclude that the detailed balance condition is satisfied with JU(T) (E?)—(E)?
accuracy proportional to the modification factorfij( C=—7=" 72 @)
Almost all recursive methods update the density of states .
by using the histogram data directly, and only after enough We can also access some quantities, such as the Helmholtz
histogram entries are accumulaﬁe?dl?i"““f’lBecause of the free energy and entropy, that are not directly available from

and the specific hedZ(T) can be determined from the fluc-
tuations in the internal energy
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conventional MC simulations. For example, by using con- 200
ventional MC methods the entropy can be estimated by inte-
grating over other thermodynamic quantities, such as the
specific heat, but the result is not always reliable because the |59l
specific heat itself is not easy to accurately determine, par-
ticularly considering its divergence at a phase transition.
However, the free energliF(T) can be calculated directly
from the partition functiorZ using

e(In(g(E)))

100 -

In(g(E))

F(T)=—ksTIn(2)= —kBTIn(; g(E)e‘E’kBT), ®

— simulation
and the entropy can then be easily computed by - exact
~U(M)—F(T)

T .

We point out that even for relatively small lattices, the Fig. 1. Logarithm of the density of states[d(E)], of the 2D Ising model

p_a(tmon functlo'n ma.y be too_Iarge to fit into a double pre-. for L=16. The relative errors of the simulational densities of states are
cision number, in which case it cannot be easily computed iRpown in the inset.

practice. Nevertheless, the thermodynamic quantities can
still be readily computed if we note that

(9) > O o0 1 2 3 4
EN

S(T)

> X(E)g(E)e FkaT=e> X(E)eMoE)]-ElkgT-\ netic Ising modéf with nearest-neighbor interactions on a
E E L XL square lattice with periodic boundary conditions. Each
(0 of theN=L2 lattice sites has a spin denoted as, which

where X(E) is a general function oE and\ is the largest can assume the values= +1 for spin up andr;=—1 for
exponent, Ifig(E)]—E/kgT. The summation on the right-hand spin down. The interaction Hamiltonian is given by
side of Eq.(10) can be computed and the fac®r does not

have to be evaluated. Because this factor appears in the nu- = — 2 oo}, (11)
merator and the denominator of E§), it cancels. This can- (i)

cellation also occurs in the evaluation of the specific heatWh . g ; ; .
> . . ere(i,j) denotes distinct pairs of nearest-neighbor sites;
The free energy, which is proportional to tligarithmof the the number of energies for this systemNs- 1 for evenL .

artition function, can also be computed without evaluating_, : ;
gx explicitly. P gThls _ modlgl52 prOVIqus an |d_eal benchmark for new
. . . - algorithms;>>“ and is also an ideal laboratory for testing
Statistical errors in the thermodynamic quantities can b‘?heory14'53 because this model can be solved exactly

estimated by repeating the simulation several times using With the exact solution for the partition function on finite-

different random number sequences, and then computing thg, o s s1em& and the expansion of the expression by Math-
averages and fluctuations in these quantities. ’

With the histogram reweighting methdit is possible to ematica, the density of states for the Ising model on a square

: . v : lattice can be obtained exactfyBealé obtained the exact
use simulational data at specific temperatures to obtain comj;

plete thermodynamic information near, or between, thos%\?ns'ty of states up th=32, and using Beale’s program,
temperatures. Unfortunately, it is usually quite difficult to "ang and Landdd were able to computg(E) for L =50.
obtain accurate information in the region far away from theln this paper we show results far=16, but Wang-Landau
simulated temperature due to difficulties in obtaining goodsampling has been used to determg{&) for lattices up to
statistics, especially for large systems where the canonical=256 for which there is currently no exact solutith.
distributions are very narrow. With Wang-Landau sampling, The estimate of the density of states foe=16 using
the histogram is “flat,” and we have essentially the sameWang-Landau sampling is shown in Fig. 1, along with the
statistics for all energy levels. Because the output of thesxact results by Bealé. The initial and final modification
simulation is the density of states, which does not depend ofactors for the random walks were fg(=1 and Inn,)

the temperature, we can then calculate most thermodynamic 1078, The histogranH(E) was considered flat when all
q_uantities at any temperature without repeating the simulagniries were not less than 80% of the averlge¢E)). The
tion. The algorithm is especially useful for obtaining thermo- ;oo 1ute density of states in Fig. 1 is obtained by the condi-
dynamic information at low temperatures, or at the transitioniyn that the number of ground states is 2 for the 2D Ising
temperature where the conventional MC algorithm is not sQ,adel. With the logarithmic scale used in Fig. 1, the simu-

efficient. lational data and exact solution overlap perfectly with each
other. In the inset of Fig. 1, we show the relative ersor
lll. APPLICATION TO A SECOND-ORDER PHASE which is defined by the ratio between the error of the simu-
TRANSITION lational data and exact values for any quanHtyas
Wang-Landau sampling is very efficient for the study of [Xsim— Xexacl
second-order phase transitions, because it sidesteps critical &(X)= T Xows (12
exac!

slowing down at the critical temperatuie, and the slow
dynamics at low temperature. To check the accuracy antlVe see thai[In(g)] is smaller than 0.2% for most of the
convergence of the method, we apply it to the 2D ferromag+egion.
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the insets, which show the relative errors for the respective
thermodynamic quantities. The relative errors are quite small
_ for the entire temperature region frokgT=0-38.
Note that because the system has a second-order phase
) transition, the first derivative of the free energy is a continu-
_ ous function of temperature. There are no jumps in either the
internal energy or the entropy even in the limit as the system
0] size goes to infinity.

The random number generator used in our simulation was
a shift-register algorithm denoted as R127%he average
number of visits to each energy for the entire duration of the
simulation(adding the average number of visits for all itera-
0.0 tions) was roughly 16. The CPU time of the simulation to
obtain the density of states shown in Fig. 1 was less than 3
min using a GNU compiler on a Pentium(4.3 GH2 pro-

Fig. 2. The canonical distribution at the transition temperaf(&,T) cessor.
=g(E)e ¥*sTc for the L=16 Ising model. The inset shows the canonical

g;ssttriek#:‘tion at a temperature slightly above and beldwfor the same IV. APPLICATION TO A FIRST-ORDER PHASE
TRANSITION

; P - In this section, we apply the algorithm to a model with a
We can calculate the canonical distribution using @igjat first-order phase transitio%{i:56 In such cases, the internal

essentially any temperature without performing multiple . L "
simulations. In Fig. 2 we show the resultant canonical distri->"er9y and the entropy havg discontinuities at th? transition,
bution at the critical temperatuf,, which exhibits a single at which both ordered and disordered states coexist. We con-

L sider the 2DQ=8 Potts modéf on L XL square lattices
peak. The_dlstrlbuuons at temperatures aboye and b§pr with nearest-neighbor interactions and periodic boundary
are also single peaked, as illustrated in the inset of Fig. 2. conditions. The total number of spins M=L2 and the

It is also important to study the influence of the errors in Lo . P '
the density of states on the calculated thermodynamic qua#amlltonlan can be written as
tities. In Fig. 3 we show the internal energy, the specific heat,
the Helmholtz free energy, and the entropy as a function of ~H=— > 8a.q)), (13
temperature fol.=16. Both the simulational results com- )
puted with Egs(6)—(9), and the exact solutions are plotted where ¢;=1,2,..Q denotes the Potts spin at siteand
and overlap almost perfectly over a wide temperature regiod(q; ,q;) is a Kronecker delta. During the simulation, we
from kgT=0-8. Because no difference is visible in theseselect lattice sites randomly and choose integers between
figures, more stringent tests of the accuracy are provided byl,Q] randomly for new Potts spin values. The modification

0.0 T T T T T
T I T 20F T T T ]
— simulation 16x 16
05~ exact n
r — simulation
L 16x 16 4 301 exact 7
10 @ 107 T T
r 4,
& - z | _ ©
£ -15- z 71 E40l2
=1 [y =&
= -4l - &
S 10 L =
-2.01 w B w
-5.0F
2.5 3 [ L T
W2 4 6 s
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R \ 1 1 \ 1 .
30, 2 4 3 8 6.0
kT kT
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4 z 04— (d) -
€ Lof - s
o1 @ 03k = b
b 2
=
05~ — simulation N 02 j 1
- exact 01 |
0.00 2 7 3 3 0,00 B ]

Fig. 3. Thermodynamic quantities for tthe=16 2D Ising model calculated from the density of states. The relative errors with respect to the exact solutions
by Ferdinand and Fish¥rare shown in the inset$a) internal energy(b) specific heat(c) Helmholtz free energy, an@l) entropy.
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Fig. 4. Logarithm of the density of statg¢E) for the 2DQ=8 Potts model Fig_. 6. Final histogram of energy for the last iteration of random walks to
as a function of energy per lattice si@/N, for L=8, 12, and 16. With the ~ estimate the density of states ofa=8 Potts model fol. = 16.
scale in the figure, the errors of the simulational data are within the width of

the lines. ference between the double peaks. Wheis slightly away

from T, one of the double peaks increases dramatically in
factor In(f;) changes from Irf¢)=1 at the beginning, to magnitude and the other decreases as shown in the inset of

10 - Fig. 5.
In(fsina) = 1078 by the end of the random walks. The histo- ) .
gram of energyH(E) is considered flat when all entries are Because of the double-peaked structure at a first-order

phase transition, conventional MC simulations are not effi-
not less than 80% of the averagd(E)). To guarantee the iont hecause an extremely long time is required for the sys-

accuracy of thermodynamic quantities at low temperature§em to travel from one peak to the other in energy space.
we use the condition that the number of the ground states ity the Wang-Landau algorithm, all possible energy levels
Q=8 to normalize the density of states. The densities ofye visited with equal probability, so it overcomes the barrier
states forL =8, 12, and 16 lattices are shown in Fig. 4. We petween the coexisting phases in the conventional MC simu-
see that the maximum density of states from our datd_for |ations. The final flat histogram fdr=16 is shown in Fig. 6,
=16 is very close t@®>*°, which is about 1.5 10°%. and it describes the total number of visits to each energy
In Fig. 5 we show the double-peaked canonical probabilitylevel for the random walk of the last iteration.
distributior?® at the transition temperatuf, for the first- Figure 7 illustrates some thermodynamic quantities calcu-
order transition, computed from the simulational data usindated from the density of states using E¢®—(9). Near the
Eg. (1). The “transition temperaturekgT.(L) is approxi- transition temperatur., the internal energy, shown in Fig.
mately 0.7519 for. =16 and is the temperature where the 7(a), has a steplike change that becomes sharper as the lattice
double peaks are of the same height. The transition temper&ize increases and transforms into a discontinuous jump
ture for the infinite lattice is known exactly to biesT, ~ When the system size goes to infinity. The magnitude of this
= 1/In(1+ Q) ~0.7449* The valley between the two peaks JUMP [shown in Fig. Ta) for an .|nf|n|te latticd equals the
is approximately 0.37 foL =16, and becomes deeper las latent heat for the phase transition.

increases. The latent heat for this temperature-driven first-. 'I_'h_e specific heat, shown in _Flg(bl, has a peak in thg
icinity of T, and both the maximum value and the position

order phase transition can be estimated from the energy dit!

1.0

L=16
k,T =0.7519
]

//
[ v
y— kyT=0.7530 4

v
I

- k,T=07508 \
1 1

|
-1.0
E/N

-1.5

0.0

of the peak depend on the finite size of the lattice.lAs
increases, the peak in the specific heat becomes narrower and
goes to a delta function in the thermodynamic limit.

Our results for the Helmholtz free energy per lattice site
are shown in Fig. (€) as a function of temperature. Because
the transition is of first-order, the first derivative of the free
energy has a discontinuity at.. (The location of this dis-
continuity can be used as an estimateTof)

Like the internal energy, the entropy shown in Figd)7
has a steplike change negy. This change becomes sharper
asL increases and becomes a discontinuous jump when
—o. Because the jump in the internal energy equals the
latent heat of the phase transition, and the free energy is
continuous afl ., the magnitude of the jump in the entropy
equals the latent heat divided By [see Eq(9)].

V. RANDOM WALK IN ENERGY AND ORDER

Fig. 5. The canonical distribution at the transition temperaf(&,T.)
=g(E)e F*sTc for the Q=8 Potts model folL=16. The inset shows the
canonical distribution at a temperature slightly above and bélgvor the
same system.

PARAMETER SPACE

To study the effect of an applied magnetic field on the
Ising and Potts models, we have to perform a random walk
1299
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Fig. 7. Thermodynamic quantities calculated from the density of states f@ #h@ Potts model fot. =4, 8, and 16{a) internal energy(b) specific heat(c)
Helmholtz free energy, an@) entropy.

in both the energy and order parameter space. 2D randomear first-order phase transitions. This metastability hinders
walks may also be required to study systems with more comstudies of first-order phase transitions using standard MC
plex orders, such as a three-dimensional spin glass modehethods.
even in the absence of external fields.

To illustrate a simple case where a 2D random walk isv|, DISCUSSION AND CONCLUSION
required, we consider the 2D Ising model in the presence of

an external magnetic field. The Hamiltonian is given by We have described an efficient algorithm to calculate the
N density of states directly for large systems. By modifying the
estimate at each step of the random walk in energy space and
H= _OED i Ui_hzl Oi- (14) carefully controlling the modification factor, we can deter-

mine the density of states very accurately. Using the density
The order parameter is the magnetization, definedVids of states, we can then calculate thermodynamic quantities at
=3N o, and we denote the exchange energy s essentially any temperature. An important advantage of this
= -3 joio;. The algorithm works as before, except that approach is that we can also calculate the Helmholtz free
the random walk is now performed in both the enegyand ~ €N€rgy and entropy, quantities that are not directly available
the order parametevl’, and a 2D histogrant(E',M") is
accumulated. :

With the estimate of the density of statgéE’,M’), the 10 Let6
partition function can be computed as a
Z(Th)= 3 g(E',M")e (E"-MM)keT, (15 i
E'\M’ <

From the partition function we can obtain thermodynamic E0.0—
quantities for all values of the temperature and magnetics
field. For example, the mean magnetization of the system car

be computed as 05

EE’ M’M ’g(E,,M /)e—(E'—hM')/kBT
EE’ M,g(E/’M/)ef(E'th')/kBT
M(T,h) is shown in Fig. 8 as a function of the external H
magnetic fieldh, for different values of the temperatuie _ o _ _ .
Note that for fixedT<T, the Ising model has a first-order Fig. .8. Magnetlzatlon per site fqr thle=16 Ising model as a functlon of
h transition ah=0. Standard MC methods generate applied field forT=1.0kg<T, (circle), T=2.3kg~T, (upright triangle,
phase h o g T=3.0kg>T, (inverted triangl¢ obtained with Wang-Landau sampling,
hyster_eSIS_ In 'Fhe magnetization curve at [6wshown as the  and the hysteresis curve obtained with the Metropolis algorithnT at
solid line in Fig. 8, because of metastable states that appea# 1.0k (solid line). The dotted line is a guide to the eye.

M(T,h)=

(16)

1.0
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