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Justification of the thermostatistical self-consistency condition

We briefly summarize known facts that suffice to derive the thermostatistical self-consistency condition [Eq. (6) in
the Main Text]
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As explained below, the first equality follow directly from of the rules of differential calculus, and the second equality
from the Hamiltonian or Heisenberg equations of motion.
To justify the first equality, recall that thermodynamics [1] builds on the assumption that the entropy S of a system in

thermal equilibrium is a state function which, for isolated systems, can be written as a function S(E,A) of the system’s
internal energy E and possibly other external parameters A = (A1, . . .), such as volume, particle number, magnetic
field strength, etc. Formal differential calculus, combined with the usual definitions of secondary thermodynamic
observables (temperature, pressure, etc.), yields the fundamental differential relation of thermodynamics
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where subscripts {E,Aµ} indicate quantities kept constant during partial differentiation. Assuming S(E,A) is locally
invertible, so that the energy can be expressed in the form E(S,A), Eq. (2) can be recast with respect to energy E as
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Multiplying Eq. (2) by T and comparing with Eq. (3) gives, by virtue of linear independence of the differentials dAµ,
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which is the first equality in Eq. (1).
To justify the second equality in Eq. (1), we relate the expression on the rhs. of Eq. (4) to the microscopic dynamics.

To this end, we consider isolated systems, merely assuming that the dynamics of any observable O(t) is governed
by a Hamiltonian H(A(t)) with time-dependent external control parameters A(t) through the Hamilton-Heisenberg
equations

d

dt
O(t) = L[H,O(t)] +

∂O

∂t
, (5)
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which holds for sufficiently slow parameter variations,1 i.e. processes that are adiabatic in the (quantum)mechanical
sense. For classical systems, the Lie-bracket L[H,O] is given by the Poisson-bracket, whereas for quantum systems
we have L[O,H] = (i/�)[O,H] with the usual commutator [ · , · ].
To make the connection with thermodynamics, we specifically consider O(t) = H(A(t)). In this case, because of

L[H,H] = 0, Eq. (5) reduces to

dH

dt
=

∑
µ

∂H

∂Aµ

dAµ

dt
. (6)

Averaging over some suitably defined ensemble, and identifying E = 〈H〉, we find

dE

dt
=

∑
µ

〈
∂H

∂Aµ

〉
dAµ

dt
. (7)

This equation states that the change dE in internal energy of an isolated system, whose dynamics is governed by
Eq. (5), is equal to the sum of various forms of work 〈∂H/∂Aµ〉 dAµ (mechanical, electric, magnetic, etc.) performed
on the system.2 Identifying ‘heat’ δQ with a change of internal energy that cannot be attributed to some form of
work, Eq. (7) shows that processes governed by the Hamilton-Heisenberg equation (5) do not involve any energy
change by heat.3 Therefore, within a consistent thermostatistical framework, such processes should also be adiabatic
in the conventional thermodynamic sense.
To compare the microscopically derived relation (7) with the standard thermodynamical relations, let us consider

some thermodynamic process t �→
(
E(t), S(t), A(t)

)
. For such a process, Eq. (3) states that

dE
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=

(
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)

A

dS
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+
∑
µ

(
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)
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dAµ
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. (8)

In particular, for adiabatic processes characterized by dS/dt = (1/T )(δQ/dt) = 0, this reduces to

dE

dt
=

∑
µ

(
∂E

∂Aµ

)

S,Aν �=µ

dAµ

dt
. (9)

Comparing Eqs. (7) and (9) justifies the second equality in the consistency relation (1).
More generally, the above considerations show that an adiabatic process in the mechanical sense is also an adiabatic

process in the thermodynamic sense, if and only if the entropy S(E,A) is an adiabatic invariant in the mechanical sense,
as already noted by Hertz [2] in 1910. Entropy definitions that are not adiabatically invariant violate the consistency
relation (1) and break the correspondence between mechanical and thermodynamic adiabatic processes. Moreover,
and most disturbingly from a practical point of view, such inconsistent entropy definitions also destroy the equivalence
between the mechanical stresses Fµ = −〈∂H/∂Aµ〉 and their thermodynamic counterparts aµ = − (∂E/∂Aµ)S,Aν �=µ

.

This is the reason for why the Boltzmann entropy SB, which is not an adiabatic invariant, can give nonsensical results
for the pressure pB = − (∂E/∂V )SB,Ai

�= −〈∂H/∂V 〉 = p and similarly for other observables, such as magnetization,

etc. By contrast, the Gibbs entropy SG, which is an adiabatic invariant [2], does not suffer from such inconsistencies.

Uniqueness of solutions of Eq. (1)

Mathematically, the consistency relations (1) define a system of linear homogeneous first-order differential equations
for the entropy S(E,A), which may be rewritten in the form

0 =
∂S(E,A)

∂Aµ
+

〈
∂H

∂Aµ

〉
∂S(E,A)

∂E
, ∀µ ∀ (E,A) : ω(E,A) > 0. (10)

1 ‘Slow’ means that the time scales of the energy change induced by the parameter variation are large compared to the dynamical time
scales of the system.

2 This is the work actually required to change the system parameters Aµ (e.g. the volume) by a small amount dAµ against the system’s
‘resistance’ 〈∂H/∂Aµ〉 (e.g. the mechanical pressure), which can be measured at least in principle and very often also in practice.

3 Since the systems under consideration are isolated, it is obvious that there can be no heat exchange with the environment, but Eq. (7)
shows that there is also no heat generated internally.
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Under moderate assumptions about the analytic behaviour of H(A), there exists a solution to the equations for
S(E,A) in the physically accessible parameter region {(E,A)| ω(E,A) > 0}, namely the phase volume Ω(E,A) [2–
4]. This solution is, however, not unique. In particular, for any solution S and any sufficiently smooth function f ,
Sf (E,A) ≡ f

(
S(E,A)

)
is also a solution. Thus, additional criteria are needed to uniquely define the entropy. These

may include conventions for the normalization or the zero point of the entropy, or requiring extensivity of the entropy
for particular model systems. Most importantly, the entropy should be compatible with conventional measurement-
based definitions of ‘temperature’, e.g. via classical ideal gas thermomether or the classical Carnot cycle with a
classical ideal gas as medium. Compatibility with the ideal gas law, combined with sensible normalization conditions
that account for ground-state and ‘mixing’ entropy, suffices to single out the Gibbs entropy.

Proof of Eq. (14) in the Main Text

To prove the temperature formula

TB =
TG

1− kB/C
, (11)

we recall that by definition

kBTG =
Ω

Ω′ =
Ω

ω
, kBTB =

ω

ω′ =
Ω′

Ω′′ , (12)

where primes denote partial derivatives with respect to energy E. Then, from the definition of the (inverse) heat
capacity, one finds

1

C
≡

(
∂TG

∂E

)
=

1

kB

(
Ω

Ω′

)′

=
1

kB

Ω′Ω′ − ΩΩ′′

(Ω′)2
=

1

kB

[
1− ΩΩ′′

(Ω′)2

]
=

1

kB

(
1− TG

TB

)
, (13)

which can be solved for TB to yield Eq. (11). Note that Eqs. (11) and (13) are valid regardless of particle number
N , provided the derivatives of Ω up to second order exist. In particular, as directly evident from Eq. (13), when
the energy of a finite system with N < ∞ and TG < ∞ approaches a critical value E∗ where the density of states
ω = Ω′ has a non-singular maximum, such that ω′ = Ω′′ = 0 or equivalently |TB| → ∞, then C → kB regardless of
system size4 N . The non-extensivity of C for E ≥ E∗ simply reflects the physical reality that it is not possible to
create population inversion by conventional heating. We further illustrate this general result by means of analytically
tractable spin models in the next section.

Extensivity and heat capacity of spin systems

To illustrate the non-trivial scaling of entropy and heat capacity with system size for spin systems with bounded en-
ergy spectrum, it is useful to discuss indistinguishable and distinguishable particles separately. Below, we first demon-
strate that, for indistinguishable particles, symmetry requirements on the wavefunction can lead to non-extensive
scaling behavior for both Boltzmann and Gibbs entropy. To clarify this fact, we consider as exactly solvable examples
the generic spin (oscillator) model from the Main Text for the analytically tractable cases L = 1 (two single particle
levels) and L = 2 (three single particle levels). Subsequently, we refer to a classical Ising chain to show that, even when
both SB and SG scale extensively with particle number N , they can still differ substantially in the thermodynamic
limit.
Two-level systems (indistinguishable particles). For the generic spin model from the Main Text with L = 1,

each of the n = 1, . . . , N particles can occupy one of the two single-particle levels n = 0 or n = 1. Considering

indistinguishable bosons, the total N -particle energy E = ε
∑N

n=1 n can take values 0 ≤ E ≤ εN and, due to
symmetry requirements on the wavefunction, there is exactly one N -particle state per N -particle energy value E, i.e.,

4 This statement remains true for infinite systems, but their mathematical treatment requires some extra care because it is possible that
in the thermodynamic limit both TB and TG diverge at E∗ whilst the heat capacity remains finite or approaches zero; see the Ising
chain example below.
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the degeneracy per N -particle level is constant, gN (E) = 1, thus yielding a constant5 DoS ωN (E) = 1/ε and a linearly
increasing integrated DoS ΩN (E) = 1 + E/ε. Hence, regardless of systems size N

SB(E,N) = kB ln gN (E) ≡ 0, (14)

SG(E,N) = kB lnΩN (E) = kB ln(1 + E/ε). (15)

Whilst, at least formally, SB is trivially extensive, it does not give the correct heat capacity C = (∂T/∂E)−1, which is
only obtained from the non-extensive Gibbs entropy SG as C = kB (intuitively, a minimal heat transfer process would
correspond to causing a single spin to flip through the absorption or emission of a photon). Note that C is independent
of N , which already signals that the entropy cannot scale extensively with particle number in this example. To see
this explicitly, let us define the energy per particle Ē = E/N and compute the entropy per particle

S̄G(Ē,N) :=
1

N
SG(E,N) =

kB
N

ln(1 +NĒ/ε). (16)

Then, for large N , one finds that

S̄G(Ē,N) � 1

N
ln(Ē/ε) +

1

N
lnN. (17)

The fact that S̄G(Ē,N) → 0 as N → ∞ clarifies that the usual thermodynamic limit is not well-defined for this
system of indistinguishable particles, but one can, of course, compute relevant thermodynamic quantities, such as the
heat capacity, for arbitrary N from the Gibbs entropy SG.

Three level systems (indistinguishable particles). We next consider the slightly more complex case L = 2, where
each of the n = 1, . . . , N particles can occupy one of the three single-particle level �n = 0, 1, 2. Considering in-

distinguishable bosons as before, the total N -particle energy E = ε
∑N

n=1 �n can take values 0 ≤ E ≤ 2εN =: E+.
Symmetry of the wavefunction under particle exchange implies that the total number of N -particle states is
ΩN (E+) = (N + 2)!/(N !2!) = (N + 2)(N + 1)/2, and that an N -particle state with energy E has degeneracy

gN (E) = Θ(E+/2− E − 1) �1 + E/(2ε)�+
Θ(E − E+/2) �1 + (E+ − E)/(2ε)�, (18)

where �x� denotes the largest integer k ≤ x, and Θ(x) ≡ 0, x < 0 and Θ(x) ≡ 1, x ≥ 0. The DoS can be formally defined
by ωN (E) = gN (E)/ε, and becomes maximal at E∗ = E+/2 = εN , where it takes the value ω(E∗) = �1 + N/2�/ε.
From Eq. (18), it is straightforward to compute exactly the integrated DoS ΩN (E), but the resulting expression as
rather lengthy and does not offer much direct insight. The physical essence can be more readily captured by noting
that ωN = gN/ε is approximately a piecewise linear function of E,

ωN (E) � 1

4ε
+

ω(E∗)

E∗ + 2ε

{
E + ε, 0 < E < E∗,

E+ + ε− E, E∗ < E < E+.
(19)

Integrating Eq. (19) over E with boundary condition ΩN (0) = 1, we find for the integrated DoS

ΩN (E) � 1 +
E

4ε
+

ω(E∗)

2(E∗ + 2ε)

{
E(E + 2ε), 0 < E < E∗,

2(Eε+ E2
∗)− (E − E+)

2, E∗ < E < E+.
(20)

One can easily verify, by numerical summation of Eq. (18) or otherwise, that this is indeed a very good approximation
to the exact integrated DoS.
Now focussing on large systems with N � 1 and energy values sufficiently far from the boundaries, ε � E � E+−ε,

the above expression for ωN and ΩN reduce asymptotically to

ωN (E) � 1

2ε2

{
E, ε � E < εN,

E+ − E, εN < E � 2εN = E+,
(21)

5 This example is equivalent to a single-particle quantum oscillator with energy cut-off at E = εN .
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and

ΩN (E) � 1

4ε2

{
E2, ε � E < εN,

2EE+ − E2 − E2
+/2, εN < E � 2εN.

(22)

It is evident from Eqs. (21) and (22) that, similar to the preceding example, neither the associated Boltzmann entropy
SB = kB ln εω nor the Gibbs entropy SG = kB lnΩ scale extensively with particle number N . This is a consequence
of the fact that, for quantum systems with bounded spectrum, the number of states at fixed energy per particle does
not always grow exponentially with N due to the limited availability of single-particle energy levels and the symmetry
constraints on the wavefunction. Furthermore, Eq. (21) implies that the Boltzmann temperature

kBTB =
ω

ω′ =

{
+E , ε � E < εN,

−E , εN < E � 2εN,
(23)

exhibits a finite jump whilst changing sign at E∗ = εN . By contrast, the Gibbs temperature

kBTG =
Ω

ω
=

1

2

{
E , ε � E < εN,
2EE+−E2−E2

+/2

E+−E , εN < E � 2εN.
(24)

remains positive over the full energy range, exhibiting a strong increase in the region E > E∗ that reflects the
practically vanishing heat capacity in the population inverted regime. More precisely, one finds from the above
formula for TG that

C

kB
=

{
2 , ε � E < εN,

2− 2E2
+

3E2
+−4E+E+2E2 , εN < E � 2εN.

(25)

Note that, because Ω′′ is discontinuous at E∗ = E+/2 in this example, the total heat capacity C also drops discon-
tinuously from 2kB to 2kB/3 at E∗ before approaching zero as E → E+.

To summarize briefly: The sub-exponential N -scaling of ω and Ω in the two above examples arises from (i) the
restrictions on the number of available one-particle levels and (ii) the permutation symmetry of the wavefunction. To
isolate the effects of (i), it is useful to study a classical Ising chain that consists of N distinguishable particles. This
helps to clarify that, even when both SB and SG grow extensively with particle number N , they do not necessarily
have identical thermodynamic limits.
Ising chain (distinguishable particles). We consider n = 1, . . . , N weakly interacting distinguishable particles that

can occupy two single-particle energy levels, labeled by �n = 0, 1 and spaced by an energy gap ε. The total energy E
of the N -particle system can take values in 0 ≤ E ≤ εN =: E+, and we denote the number of particles occupying the
upper single-particle state by Z = E/ε. The degeneracy of an N -particle energy level E = Zε is

gN (E) =
N !

(E/ε)!(N − E/ε)!
=

N !

Z!(N − Z)!
, (26)

and the DoS is given by ωN (E) = gN (E)/ε. As before, we define the mean energy per particle by Ē := E/N = εZ/N ,
where Z/N is the fraction of particles occupying the upper levels. For large N � 1 and constant Ē, we have

gN (ĒN) � e−N [(1−Ē/ε) ln(1−Ē/ε)+(Ē/ε) ln(Ē/ε)]. (27)

This implies immediately that the associated Boltzmann entropy SB = kB ln εω = kB ln g is extensive (i.e., scales
linearly with N). Thus, in the thermodynamic limit, the Boltzmann entropy per particle, S̄B = SB/N , becomes

S̄B � −kB[(1− Ē/ε) ln(1− Ē/ε) + (Ē/ε) ln(Ē/ε)], (28)

and the associated Boltzmann ‘temperature’

kBTB =
ε

2 arctanh(1− 2Ē/ε)
(29)

diverges at Ē = ε/2. In particular, we see that TB is positive for Ē < ε/2 but becomes negative when Ē > ε/2.
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In order to compare with the corresponding Gibbs entropy, it is useful to note that Eq. (28) can be (quite accurately)
approximated by the parabola6

S̄B ≈ kB(ln 2)[(1− 2Ē′/ε)2 − 1]. (30)

Adopting this simplification, one finds for the associated Boltzmann temperature

kBTB ≈ ε

(ln 16)(1− 2Ē/ε)
, (31)

which is both qualitatively and quantitatively very similar to Eq. (29).
To compute the Gibbs entropy, we must determine the integrated DoS ΩN , which according to Eqs. (27) and (28),

is given by

ΩN (E)− ΩN (0) � 1

ε

∫ E

0

dE′ gN (E′) �
∫ E

0

dE′ e−NS̄B . (32)

Changing the integration variable from the total energy E′ to the energy per particle Ē′ = E′/N , inserting the
harmonic approximation (30) for S̄B , and noting that the groundstate is non-degenerate, ΩN (0) = 1, we obtain

ΩN (E) ≈ 1 +
N

ε

∫ Ē

0

dĒ′ exp{−N(ln 2)[(1− 2Ē′/ε)2 − 1]}

= 1 + 2N−2

(
πN

ln 2

)1/2 {
erf(

√
N ln 2)− erf[(1− 2Ē/ε)

√
N ln 2]

}
. (33)

This result implies that also the Gibbs entropy SG = kB lnΩ becomes extensive for sufficiently large N and, hence, the
thermodynamic limit is well-defined. More precisely, letting N → ∞ at constant energy per particle Ē, one obtains
the Gibbs entropy per particle, S̄G = SG/N , as

S̄G ≈ kB(ln 2)

{
4(1− Ē/ε)(Ē/ε), Ē < ε/2,

1, Ē ≥ ε/2,
(34)

and from this the absolute thermodynamic temperature

kBTG ≈

{
ε

(ln 16)(1−2Ē/ε)
, Ē < ε/2,

+∞, Ē ≥ ε/2.
(35)

By comparing with Eq. (31), we see that, in the thermodynamic limit:

1. TB and TG become equal for subcritical energy values Ē < ε/2, corresponding the non-population inverted phase,
but

2. TB and TG differ in the population inverted regime Ē > ε/2.

Strictly speaking, Eq. (33) implies that, for finite Ising chains, TG remains finite over the full energy range (0, E+)
but grows extremely rapidly when the specific energy Ē is increased beyond ε/2. In the thermodynamic limit, however,
TG diverges to +∞ at Ē = ε/2 and remains at this value when the energy is increased further. An explicit calculation
of the heat capacity C for the Ising model confirms that C(E+/2) = kB for all N , in agreement with the statements
after Eq. (13) and signaling that the total heat capacity is not extensive in the population-inverted regime Ē ≥ ε/2.
More precisely, one finds for the heat capacity per particle C̄ = C/N that

C̄ ≈ kB

{
(ln 4)(1− 2Ē/ε)2, Ē < ε/2,

0, Ē ≥ ε/2.
(36)

6 This corresponds to an effective Stirling-type approximation for the degeneracies gN , tailored to match the boundary conditions at
E = 0 and E = E+.
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Moreover, the total heat capacity C, although scaling extensively with N for Ē < ε/2, also vanishes7 for Ē > ε/2.
Thus, the Gibbs entropy predicts correctly that the heat capacity C of the infinite Ising chain becomes zero for
Ē > ε/2, reflecting the fact that population inversion in an infinite system cannot be achieved by conventional
heating.
In conclusion, the above calculations for the Ising model illustrate that, even when both SB and SG are extensive

at subcritical energies, they do not necessarily have identical thermodynamical limits in the population-inverted
regime. That the Gibbs entropy SG produces reasonable results for the Ising chain in the thermodynamic limit may
be regarded as a valuable cross-check, but is in fact not very surprising given that SG fulfills the thermostatistical
self-consistency criteria.

Invalid arguments against the Gibbs entropy

Both the general arguments and the specific examples in the Main Text show that the Boltzmann entropy is not
a consistent thermostatistical entropy, whereas the Gibbs entropy respects the thermodynamic relations (2) and also
gives reasonable results for all analytically tractable models. Despite its conceptual advantages, the Gibbs formalism
is sometimes met with skepticism that appears to be rooted in habitual preference of the Boltzmann entropy rather
than unbiased evaluation of facts. In various discussions over the last decade, we have met a number of recurrent
arguments opposing the Gibbs entropy as being conceptually inferior to the Boltzmann entropy. None of those
objections, however, seems capable of withstanding careful inspection. It might therefore be helpful to list, and
address explicitly, the most frequently encountered ‘spurious’ arguments against the Gibbs entropy that may seem
plausible at first but turn out to be unsubstantiated.
1. The Gibbs entropy violates the second law dS ≥ 0 for closed systems, whereas the Boltzmann entropy does not.

This statement is incorrect, simply because for closed systems with fixed control parameters (i.e., constant energy,
volume, etc.) both Gibbs and Boltzmann entropy are constant. This general fact, which follows trivially from the
definitions of SG and SB, is directly illustrated by the classical ideal gas example discussed in the Main Text.
2. Thermodynamic entropy must be equal to Shannon’s information entropy, and this is true only for the Boltzmann

entropy. This argument can be discarded for several reasons. Clearly, entropic information measures themselves
are a matter of convention [5], and there exists a large number of different entropies (Shannon, Renyi, Kuhlback
entropies, etc.), each having their own virtues and drawbacks as measures of information [6]. However, only few
of those entropies, when combined with an appropriate probability distribution, define ensembles [7] that obey the
fundamental thermodynamic relations (2). It so happens that the entropy of the canonical ensemble coincides with
Shannon’s popular information measure. But the canonical ensemble (infinite bath) and the more fundamental MC
ensemble (no bath) correspond to completely different physical situations [8] and, accordingly, the MC entropy is,
in general, not equivalent to Shannon’s information entropy (except in those limit cases where MC and canonical
ensembles become equivalent). Just by considering classical Hamiltonian systems, one can easily verify that neither
SB nor SG belong to the class of Shannon entropies. This does not mean that these two different entropies cannot
be viewed as measures of information. Both Gibbs and Boltzmann entropy encode valuable physical information
about the underlying energy spectra, but only one of them, SG, agrees with thermodynamics. Although it may seem
desirable to unify information theory and thermodynamic concepts for formal or aesthetic reasons, some reservation
is in order [4] when such attempts cause mathematical inconsistencies and fail to produce reasonable results in the
simplest analytically tractable cases.
From a more general perspective, it could in fact be fruitful to consider the possibility of using thermodynamic

criteria as a means for discriminating between different types of information entropy [5]. That is, instead of postulating
that thermodynamic entropy must be equal to Shannon entropy, it might be advisable to demand thermostatistical
self-consistency in order to single out the particular form of information entropy that it is most suitable for describing
a given physical situation.
3. Non-degenerate states must have zero thermodynamic entropy, and this is true only for the Boltzmann entropy.

This argument again traces back to confusing thermodynamic and Shannon-type information entropies [4]. Physical
systems that possess non-degenerate spectra can be used to store energy, and one can perform work on them by
changing their parameters. It seems reasonable to demand that a well-defined thermodynamic formalism is able
to account for these facts. Hence, entropy definitions that are insensitive to the full energetic structure of the
spectrum by only counting degeneracies of individual levels are not particularly promising candidates for capturing
thermodynamic properties. Moreover, it is not true that the Boltzmann entropy, when defined with respect to a

7 The emergence of a singularity in C at Ē = ε/2 in the thermodynamic limit can be interpreted as a phase transition.
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coarse-grained DoS, as commonly assumed in applications, assigns zero entropy to non-degenerate spectra, as the
DoS merely measures the total number of states in predefined energy intervals but does not explicitly reflect the
degeneracies of the individual states. If, however, one were to postulate that the thermodynamic entropy of an energy
level En with degeneracy gn is exactly equal to kB ln gn, then this would lead to other undesirable consequences:
Degeneracies usually reflect symmetries that can be broken by infinitesimal parameter variations or small defects in a
sample. That is, if one were to adopt kB ln gn, then the entropy of the system could be set to zero, for many or even
all energy levels, by a very small perturbation that lifts the exact degeneracy, even though actual physical properties
(e.g., heat capacity, conductivity) are not likely to be that dramatically affected by minor deviations from the exact
symmetry. By contrast, an integral measure such as the Gibbs entropy responds much more continuously (although
not necessarily smoothly) to such infinitesimal changes. By adopting the proper normalization for the ground-state
entropy, SG(E0) = kB lnΩ(E0) = kB ln g0, the Gibbs entropy also agrees with the experimentally confirmed residual
entropy [9–11].
4. If the spectrum is invariant under E → −E, then so should be the entropy. At first sight, this statement may

look like a neat symmetry argument in support of the Boltzmann entropy, which indeed exhibits this property (see
example in Fig. 1 of the Main Text). However, such an additional axiom would be in conflict with the postulates of
traditional thermodynamics, which require S to be a monotonic function of the energy [1]. On rare occasions, it can be
beneficial or even necessary to remove, replace and adapt certain axioms even in a well-tested theory, but such radical
steps need to be justified by substantial experimental evidence. The motivation for the ‘new’ entropy invariance
postulate is the rather vague idea that, for systems with a DoS as shown in Fig. 1 of the Main Text, the maximum
energy state (‘all spins up’) is equivalent to the lowest energy state (‘all spins down’). Whilst this may be correct if
one is only interested in comparing degeneracies, an experimentalist who performs thermodynamic manipulations will
certainly be able to distinguish the groundstate from the highest-energy state through their capability to absorb or
release energy quanta. Since thermostatistics should be able to connect experiment with theory, it seems reasonable
to maintain that the thermodynamic entropy should reflect absolute differences between energy-states.
5. Thermodynamic relations can only be expected to hold for large systems, so it is not a problem that the Boltzmann

entropy does not work for small quantum systems. Apart from the fact that the Boltzmann entropy does not obey
the fundamental thermodynamic relation (1), it seems unwise to build a theoretical framework on postulates that fail
in the simplest test cases, especially, when Gibbs’ original proposal [3] appears to work perfectly fine for systems of
arbitrary size8. A logically correct statement would be: The Boltzmann entropy produces reasonable results for a
number of large systems because it happens to approach the thermodynamically consistent Gibbs entropy in those
(limit) cases. To use two slightly provocative analogies: It does not seem advisable to replace the Schrödinger equation
by a theory that fails to reproduce the hydrogen spectrum but claims to predict more accurately the spectral properties
of larger quantum systems. Nor would it seem a good idea to trust a numerical algorithm that produces exciting
results for large systems but fails to produce sensible results for one- or two-particle test scenarios. If one applies
similar standards to the axiomatic foundations of thermostatistics, then the Boltzmann entropy should be replaced
by the Gibbs entropy SG, implying that negative absolute temperatures cannot be achieved.

6. The Gibbs entropy is probably correct for small quantum systems and classical systems, but one should use the
Boltzmann entropy for intermediate quantum systems. To assume that a theoretical framework that is known to be
inconsistent in the low-energy limit of small quantum systems as well as in the high-energy limit of classical systems,
may be preferable in some intermediate regime seems adventurous at best.

We hope that the discussion in this part, although presented in an unusual form, is helpful for the objective
evaluation of Gibbs and Boltzmann entropy9. It should be emphasized, however, that no false or correct argument
against the Gibbs entropy can cure the thermodynamic incompatibility of the Boltzmann entropy.
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[2] P. Hertz. Über die mechanischen Grundlagen der Thermodynamik. Annalen der Physik (Leipzig), 33:225–274, 537–552,
1910.

8 A practical ‘advantage’ of large systems is that thermodynamic quantities typically become ‘sharp’ [8] when considering a suitably
defined thermodynamic limit, whereas for small systems fluctuations around the mean values are relevant. However, this does not mean
that thermostatistics itself must become invalid for small systems. In fact, the Gibbs formalism [3] works perfectly even for small MC
systems [7, 12].

9 One could add another ‘argument’ to the above list: ‘The Boltzmann entropy is prevalent in modern textbooks and has been more
frequently used for more than 50 years and, therefore, is most likely correct’– we do not think such reasoning is constructive.

8 NATURE PHYSICS | www.nature.com/naturephysics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2815

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys2815


9

[3] J. W. Gibbs. Elementary Principles in Statistical Mechanics. Dover, New York, reprint of the 1902 edition, 1960.
[4] A. I. Khinchin. Mathematical Foundations of Statistical Mechanics. Dover, New York, 1949.
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