PHY 712 Electrodynamics
9-9:50 AM MWF Olin 103

Plan for Lecture 3:
Reading: Chapter 1 in JDJ

1. Review of electrostatics with one-
dimensional examples

2. Poisson and Laplace Equations
3. Green’s Theorem and their use in
electrostatics
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PHY 712 Electrodynamics

[MWF 9-9:50 AM OPL 103 |nttp:/iwww.wfu.ed ~nataliels15|§hx712/‘

I : Natalie Holzwarth [Phone:758-5510 [Office:300 OPL [e-mail:natalie@wfu.edu|

Course schedule for Spring 2015

(Preliminary schedule -- subject to frequent adjustment.)

Lecture date | JDJ Reading Topic Assign. Due date
1 Mon: 01/12/2015 |Chap. 1 Introduction, units and Poisson equation [#1 01/23/2015
2 \Wed: 01/14/2015 |Chap. 1 Electrostatic energy calculations #2 01/23/2015
Fri: 01/16/2015  [No class NAWH out of town
Mon: 01/19/2015 |No class MLK Holiday
3 |Wed: 01/21/2015 |Chap. 1 Poisson equation and Green's theorm \ﬁ 01/23/2015
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WFU Physics Colloquium
TITLE: Quantum Poetics: The Word and Its Earthwork
SPEAKER: Dr. Amy Catanzano,
Department of English

IME: Wednesday January 21, 2015 at 4:00 PM
PLACE: Room 101 Olin Physical Laboratory

Refreshments will be served at 3:30 PM in the Olin Lounge. All
interested persons are cordially invited to attend.

ABSTRACT
Poetry and science are ordinarily considered to be different disciplines with distinct goals,
methods, and questions. | am part of a contemporary and historical lineage of poets who

explore the intersections of poetry and science. My work focuses on poetry in relation to
relativity, quantum mechanics, and string theory. My methodology follows in the tradition of
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Poisson and Laplace Equations
We are concerned with finding solutions to the Poisson
equation:

Vo, (r) =0
&
and the Laplace equation: 0
VO, (r)=0

The Laplace equation is the “homogeneous” version of the
Poisson equation. The Green's theorem allows us to
determine the electrostatic potential from volume and surface
integrals: 1

() = [, d'r ()G ) +

%{d%[an0V¢054M0VCuiﬂfl
s
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General comments on Green’s theorem

B0 | e )+
ij‘sdzr' [G(r,r')V'CD(r') - q)(r')V'G(r,r')} . f'

This general form can be used in 1, 2, or 3 dimensions. In
general, the Green's function must be constructed to satisfy
the appropriate (Dirichlet or Neumann) boundary conditions.
Alternatively or in addition, boundary conditions can be
adjusted using the fact that for any solution to the Poisson
equation, CDP (r) other solutions may be generated by use
of solutions of the Laplace equation

O(r)=D,(r)+ CD,(r),for any constant C.
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“Derivation” of Green’s Theorem
_p®)

80
Green's relation:  V"’G(r,r) = 475" (r —r').

Poisson equation: V’®(r) =

Divergence theorm: J.dzr V-A= (f)dzr At
v s

Let A= f(r)Vg(r)—-g(r)Vf(r)
Id3r V-(f(r)Vg(r)—g(r)Vf(r)) :(i)dzr (f(r)Vg(r)—g(r)Vj'(r))~i‘
Ja”r (f(r)Vzg(r) —g(r)sz(r))
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“Derivation” of Green’s Theorem
_p®)

80
Green's relation: V'’G(r,r) = 475" (r —r').

Poisson equation: V’®(r) =

:I:dSr V-(f(r)Vzg(r)—g(r)sz(r)):(j)dzr (f(r)Vg(r)—g(r)Vf(r))-f'

f(r)o @) g(r)=G(r,r)
O(r)= igojyd%p(r')G(r,r') +

%j 4 [Gr X Vo) - o WV G(r.r) ]+,
T N

112112015 >HY 712 Spring 2015 - Lecture 3

1/20/2015

Example of charge density and potential varying in one dimension

Consider the following one dimensional charge distribution:

0 forr < —a
—po for—a<z<0
+pp for0<z<a
0 forz >a

‘We want to find the electrostatic potential such that

#o@) _ pla)

with the boundary condition ®(—o00) = 0.
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Electrostatic field solution

The solution to the Poisson equation is given by:

0 forz < —a
() = %(m+a)2 for—a <z <0

o (1 _ 4)2 4 Pod®
—f2(z—a)’+ 2= for0<z<a

2042 forz >a
€0

The electrostatic field is given by:

0 forz < —a
o
—2(x+a) for—a<z<0
E(z) = & ) .
X(zx—a) for0<z<a
0 forz >a
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Electric charge density
Electric potential
Electric field
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Comment about the example and solution

This particular example is one that is used to model
semiconductor junctions where the charge density is
controlled by introducing charged impurities near
the junction.

The solution of the Poisson equation for this case can
be determined by piecewise solution within each of the

four regions. Alternatively, from Green's theorem in
one-dimension, one can use the Green's function

O(x) = ;J‘x G(x,x)p(x)dx  where G(x,x)= 4rx,
4re, T

x_ should be take as the smaller of x and x'.
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Notes on the one-dimensional Green’s function

The Green's function for the one-dimensional

Poisson equation can be defined as a solution to

the equation: V2G(x,x ) =—4nd(x —x)

Here the factor of 47 is not really necessary, but

ensures consistency with your text's treatment of

the 3-dimensional case. The meaning of this expression
is that x' is held fixed while taking the derivative with

respect to x.
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Construction of a Green’s function in one dimension

Consider two independent solutions to the homogeneous equation

Vi(x)=0
wherei=1or2. Let
Gx) =4 (30

This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

W is defined as the "Wronskin":

1/20/2015

_4d4 () _ d¢,(x)
W= i #(x) -4 (x) R
Summary

V2G(x,x ) =—4m5(x — x)

Gxx) = %’mm@(m

_d¢(x) _ dg,(x)
W= e $(x) — ¢, (%) dx
dG(x,x)Jir _dG(x,x)Jr; .
dx X=X +€ dx X=X —€
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One dimensional Green’s function in practice

D(x) = ﬁ j: G(x,x") p(x")dx'

:ﬁ%{jt G(x,x)p(x )x + J'w G(x,x’)p(x’)dx'}

For the one-dimensional Poisson equation, we can construct

the Green's function by choosing ¢ (x) =x and ¢,(x) =L =1:

d(x) = gi{ [" xpyax +x[ p(x')dx'}.

This expression gives the same result as previously
obtained for the example p(x) and more generally is
appropriate for any neutral charge distribution.
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Orth 1 function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u, ()} defined in the
interval x; < x < x5 such that

22
[ unle)un(@) da = 6o,
£
We can show that the completeness of this functions implies that

3 tn(@)n(e') = 8o — 2.
n=1

This relation allows us to use these functions to represent a Green’s function for our
system. For the 1-dimensional Poisson equation, the Green’s function satisfies
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92
WG(.T. 2') = —4nd(z — 2').
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Orth 1 fi ion exp i i d
Therefore, if
&2
@Um,(l‘) = —ann(z),

where {u, ()} also satisfy the appropriate boundary conditions, then we can write |
Green’s functions as

Qn

i IR,
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Example

For example, consider the example discussed earlier in the interval —a < x < a with

0 forr < —a
—po for—a<z<0
pz) = (24)
+po for0<z<a
0 forz >a
‘We want to solve the Poisson equation with boundary condition d®(—a)/dz = 0 and
d®(a)/dx = 0. For this purpose, we may choose

un(z) = \/gsin (W) . (25)

The Green’s function for this case as:

(26)

1/21/2015 PHY 712 Spring 2015 - Lecture 3 18




Example - continued

poa >, sin ( it ”) 1
(@) = By 2]
(2n+1]m)3 " 2

n=0
08
06
04
02
1 -05 0 05
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