PHY 712 Electrodynamics
9-9:50 AM MWF Olin 103

Plan for Lecture 4:
Reading: Chapter 1 & 2 in JDJ
Electrostatic potentials

1. One, two, and three dimensions
(Cartesian coordinates)

2. Mean value theorem for the
electrostatic potential
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PHY 712 Electrodynamics

[MWF 9-9:50 AM [OPL 103 | wru. ie/s15phy712/|
I : Natalie Holzwarth [Phone:758-5510 Office:300 OPL [e- edu

Course schedule for Spring 2015

(Preliminary schedule -- subject to frequent )
Lecture date JDJ Reading Topic \ Assign. Due date
1 Mon: 01/12/2015 [Chap. 1 Introduction, units and Poisson equation  [#1. 01/23/2015
2 Wed: 01/14/2015 [Chap. 1 [Electrostatic energy calculations [e2 01/23/2015
Fri: 01/16/2015  [No class INAWH out of town
Mon: 01/19/2015 [No class [MLK Holiday
3 Wed: 01/21/2015 [Chap. 1 [Poisson equation and Green's theorm [za [01/23/2015
4 Fri: 01/23/2015  [Chap.1&2  [Green's functions in Cartesian coordinates [#4 01/25/2015
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Poisson Equation

£r)

€y

V2O,(r)=-

Solution to Poisson equation using Green's function G(r,r"):

O(r) = i_{yapr'p(r')G(r,r') +

%j & [Gr, e )V (") - D(r')V' G(r,r)]-F.
T N
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Poisson equation for one-dimensional system
40, __px)

. : &
Example solution:

1 =
®,(x)=— [ Gx,x)p(x)dx'+ €, + Cyx
4re, >
where G(x,x")=4zx_ where x_ is the smaller of x and x";

C, and C, are constants.

Check:
cD,,(x):i{j’ x‘p(x')dx'+xj"p(x‘)dx'} +C+Cpx
2 U .

d®,(x) 1
——e = dx'+C, =
%Lpu>x )

d*®,(x) __p)
ax’ £
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General procedure for constructing Green’s function for one-
dimensional system using 2 independent solutions of the
homogeneous equations

Consider two independent solutions to the homogeneous equation
Vig(x)=0
where i =1or2. Let
4z
G(x,x") = Wﬂ(&)%(&)'
This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

"Wronskian": W = %@(x) _ mg%i

Beautiful method; but only works in one dimension.
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th

r I function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u, ()} defined in the
interval x; < x < x5 such that

.
/ Un (@)t (2) A& = G-
£

We can show that the completeness of this functions implies that
oo
3 wn(@)un(a’) = 8(x — ).
n=1

This relation allows us to use these functions to represent a Green’s function for our
system. For the 1-dimensional Poisson equation, the Green’s function satisfies
52

WG(&C.I’) = —4rd(z — a').
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Orthogonal function expansion -- continued
Suppose the orthogonal functions satisfy an eigenvalue equation:

42
ﬁun(ﬂ =-a,u,(x)

n“n

where the functions u, (x) also satisfy the appropriate boundary
conditions, then we can construct the Green's function:
u, (X)u, (x'
G ) = 4y )
m a,

n

Check:

%G(x’x,) _ 4”2M =47 u, (O, (x')
Ix " o

n

1/22/2015

=—475(x—x")
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Example
For example, consider the previous example in the interval
—a<x<a:
0 for x <—a

-p, for —a<x<0
p(x) =
+p, for O<x<a
0 for x>a
We want to solve the Poisson equation with boundary condition

d®(—a)/dx=0and dd(a)/dx=0. We may choose

1 2n+1]7 . .
u,(x)= \/:sin([n;ij and the corresponding Green's function
a a

Sin[[2n+ ]]ﬂ'xjsin([zn + l]ﬂ'x'J

N A& 2a 2a
Glx,x)=—3" -
a = [2n+1]7
2a
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Example -- continued
This form of the one-dimensional Green's function only allows us to find a

solution to the Poisson equation within the interval —a < x <a from

(x) = Lj dx' G(x,x)p(x) + C,
4ng, 7

. ([2n+1]ﬂx]
2| LT
Sow=29 16y~ 24/, |
[ 0 (2n+1]7) 2

choosing C, so that ®(—a) =0.

0 for x<—a
P (x1a) for —a<x<0
2¢,
Exact result: ®(x) = a’
) P (—ap + P for 0<x<a
2¢, o
Loy for x>a
&
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Example -- continued

[[Zn + l]ﬂx)
_ﬂL, !
@ 16;; nszy 2
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Orthogonal function expansions in 2 and 3 dimensions

F(r)  FD(r) D) _

Vi(r) = e > p

—p(r) /€,

Let {u” (x)}, {v” (y)}, {W” (z)} denote complete orthogonal

function sets in the x, y, and z dimensions, respectively. The

Green's function construction becomes:

G221 = 4y I O, 0 2o, ()
Tmn a+pB,+7,

where
2

e —u(x) = —au(x),

d P dz

(See Eq. 3.167 in Jackson for example )
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42
v, (¥) ==B,v,(y), and ——=w,(2) ==7,w,(2).

Combined orthogonal function expansion and
homogeneous solution construction of Green’s function
in 2 and 3 dimensions.

An alternative method of finding Green's functions for second

order ordinary differential equations is based on a product of two

independent solutions of the homogeneous equation, ¢ (x) and ¢,(x):

4r

d¢ , _ dg,’
dx¢2 ¢'dx

where x_ denotes the smaller of x and x'.

G(x,x") = K¢ (x.)¢,(x.), where K =

For the two and three dimensional cases, we can use this
technique in one of the dimensions in order to reduce the
number of summation terms. These ideas are discussed in
Section 3.11 of Jackson.

23/2015 PHY 712 Spring 2015 - Lecture 4 12




Green’s function construction -- continued
For the two dimensional case, for example, we can assume that the

Green's function can be written in the form:
G(x,x,y,y) = D u, ()u, (x)g, (v, ).

The y dependence of this equation will have the required
2

behavior, if we choose: |:7a” + %} g, ) =—478(y -y,

which in turn can be expressed in terms of the two independent
solutions v, (¥) and v, () of the homogeneous equation:

dZ
-, =0,
{dyz }v )

. 4r
and the Wronskian constant: K, = —————
dv, dv,
: vlh - Vﬂ -
dy ™ " dy
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Green'’s function construction -- continued

G(x,x',y,y) =D u, (X, (XK, (v v, (1)
For example, a Green's ?unction for a two-dimensional rectangular system

with 0 < x < g and 0 < y <b, which vanishes on the rectangular boundaries|

B sin(””")sin(ﬂ]sinh(@)sinh(ﬂ(b - y>)]
G(x,x,y,y)=8)" d d 2 d :
n=1
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Lo
O(r)=——| dr'p(r"G(r,r")+
(r) MEJV r pe)G(EK)

Lj dzr'[G(r,r')V'GD(r') —O@r)V'G(r,r)]- "
4r s

Y sin(@jsin(ﬂjsinh(nﬁy< )sinh(ﬂ(bfy)J
Glx.x',p,y) =8y ——~ “ “ “ .

nsinh(@
a

n=1
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A useful theorem for electrostatics
The mean value theorem (Problem 1.10 in Jackson)

The “mean value theorem” value theorem (problem 1.10 of your textbook) states that the
value of ®(r) at the arbitrary (charge-free) point r is equal to the average of ®(r’) over
the surface of any sphere centered on the point r (see Jackson problem #1.10). One way
to prove this theorem is the following. Consider a point r’ = r + u, where u will
describe a sphere of radius R about the fixed point r. We can make a Taylor series
expansion of the electrostatic potential ®(r’) about the fixed point r:

B(r +u) = B(r) +u-VO(r) - %(u-vﬁq)(r)+%(u-vy"q>(r)+%(u-V)4<1>(r)+- o
) ' ' 0

According to the premise of the theorem, we want to integrate both sides of the equation
1 over a sphere of radius R in the variable u:

27 +1
/ dS,, =:R? / do, / dcos(0,,). )
Jsphere Jo J-1
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Mean value theorem - continued

‘We note that
2m +1
RZ/ dm/ dcos(04)1 = 47R?,
o -1
o +1
Rz/ dau/ dcos(fu)u -V =0,
o -1

4nR*
3

o pen +1 ) i
R‘/ dw/ deos(fu)(u-V)* = V2,
0 -1

% pen
G . p—
R A d@/ﬂ deos(@u)(u- V) =0,

r2m +1 An RS
R‘/ dm/ deos(0u)(u- V)* = T2 vt
0 -1 5
Since V2 (r) = 0, the only non-zero term of the average is thus the first term:

9% Lo
RZ/ du / deos(0,)B(x + u) = drR2(x),
o Ly

or
D(r) = R? ‘.do 1dcosﬂ Dr+u)= —— dS.®(r +u
(r) oy / /1 (6)2( ) 4R‘/ ( ).

Since this result is independent of the radius R, we see that we have the theorem.
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