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PHY 712 Electrodynamics
9-9:50 AM Olin 103

Plan for Lecture 20:

1. Review of Mid-term Exam

2. Electromagnetic waves within waveguides
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10 |Fri: 02/06/2015 Chap. 4 Dipoles and dielectrics 10 (0210912015
11 [Mon: 02/09/2015  Chap. 5 Magnetostatics 11 (0211172015
12 [Wed: 02/11/2015 _ Chap. 5 Magnetostatics 12 0211312015
13[Fri: 02/13/2015 _ Chap. 5 Magnetostatics [#13 021612015
14 |Mon: 02/16/2015 Chap. 6 Maxwell's equations #14 |02/18/2015
15 [Wed: 02/18/2015_Chap. 6 Electromagnetic energy and force #15 (0212012015
16 |[Fri: 02/20/2015  Chap. 7 Electromagnetic plane waves. 416 (0212312015
17 [Mon: 02/23/2015_ Chap. 7 Dielectric media #17 (0212512015
18 [Wed: 02125/2015 Chap. 7 Complex dielectrics #18 022712015
19 |Fri: 02127/2015 _ Chap. 1-7 Review - Take home exam distributed
[Mon. 03/02/2015 APS Meeting _ Take-home exam (no class meeting)
[Wed. 03/04/2015 APS Meeting  Take-home exam (no class meeting)
[Fri. 03/06/2015  APS Meeting _ Take-home exam (no class meeting)
IMon. 03/09/2015  Spring Break
[Wed. 03/11/2015 _ Spring Break
Fri. 03/13/2015 _ Spring Break
- 20 [Mon: 03/16/2015_ Chap. 8 Review Exam; Wave guides [#19 [o3r1812015
21 [Wed: 03/18/2015 _Chap. 8 Wave guides [#20 0312012015
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Review of Mid-Term Exam Problems

1. Consider the following one-dimensional charge distribution in vacuum:

0 z < —af2
ple) = { pocos(nz/a) —a/2 <z < 3a/2
r > 3a/2

where py is a constant having the units of charge per unit volume and a is a length constant
It is assumed that the charge density and all related fields are uniform in the y and =
directions.

(a) Find the electrostatic potential as a function of  for all ~co < & < oc due to this
charge distribution, assuming the boundary conditions

1](1'(:)J —0 and 1](1»(1)J —o0

da dx

Determine the value of ®(x = oc) — $(x = —o0).

() Determine the corresponding z-component of the electrostatic field as a function of

()

E@=—g

(d) Find the corresponding electrostatic energy W and electrostatic energy density w(z)
discussed in Egs. 1.54 and 155 of your textbook

Use Maple or another program to gencrate plots of your results
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Potential is determined up to a constant:

O(x)= %(J.;du up(u)+ xjj p(u)du)
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0 x<-al2
a’ X x 1
D(x)=1— cos[—j—ﬂ(7+fj —a/2<x<3al2
€T a a 2
2
2 x>3a/2
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dD(x)
E(x)=—
(x) .
0 x<-al?2
E(x)= i(sin(ﬁj+ 1] —al2<x<3a/2
€ a
0 x>3a/2

-1 0 1 2

b
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Consider the arca shown in the diagram above where 0 < z < 4h and 0 < y < 3h. A charge

density within this area is given by

e y
(2, 5) = posin (E) sin (W)

In this problem, you will find the corresponding clectrostatic potential #(z, y.) with the
boundary conditions (0, y) = ®(x, 0) = ®(4h,y) = d(x,3h) = 0, using 3 different methods

(a) First find analytic form for ®(z, y) using Green’s functions or other methods of your
choice

(b) Now find the numerical approximation to ®(z, y) using the finite difference method
discussed in class and in your text book. Compare your numerical results with the
analytic resul

(¢) Finally find t
discussed i
analytic results

numerical approximation to ®(z, y) using the finite element method
and in your text book. Compare your numerical results with the
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Poisson equation:

VO(x,y) = _pxY) where p(x,y)= p,sin ZX Nsin| 22
€ 4h 3h

Solution:

q)(x,y)=%sin Z—; sin| 22

p s pa 3h
+
¥ ?
3h

&l — —
4h 3h
P n? 2h
D(3h,h)=D(3h,2h) =—0.3573866880 h
%

DAy = D2h2ky =20 5054211012 — -
@hD =0 =2 06 h 2n3n 4h A
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Exact values on grid points:
D(h,h)=D(h,2h) =
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For numerical solutions, refer to Lecture 5:
Finite difference:

Sp= Oz +h,y) +(z — h,y) + D(z,y + h) + ®(x,y — h)
Sp= ®(z+h,y+h)+®(x—h,y+h)+®(x+hy—h)+Sx—hy—h)
1 1 3h2 5
O(x,y) — =S4 — —Sp = —p(x, ——V2p(z,y).
O(z,y) 554~ 5558 10301)(1 y) + lomv pz.y)
1 -L oo L 1
. 5 520
Linear algebra problem
1 1 1 1 1
of the form: Mx=b 5l % 0 v a0
where, if no symmetry o L ;o L 1
. . . 5 20 5
is used, M is a 6 x 6 matrix:
1 1 1
s 20 ° ! s 0
U S U S e .
20 s 5 5 20
1
0 3 5 ° 1
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Finite element method:
D(w,y) = tijdis(x,v), > Muisbig = Gu,
ij

j

My, = [de[dyV g, (x, )V, (x, )

Gy = - [def o (e 1opte )

(%, )
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Convenient chojce of fi elements --
0(x,y) = E(w)?/m/%

7) forz; —h<z<z;+h

Xi(x) =
0 otherwise
% fork=iandl =j
Myij =4 -4 fork—i==landlorl—j==1
0 otherwise .
8 1 1 1
3 3 % 330
NRUNE TS T D S
3 3 3 3 3 3
Form of M for Ls L
. . 0 - — 0 - -
without using 33 3ol
. 1 1 8 1
symmetry: L T T
L1118 1
3 3 3 3 3 3
1 1 8
L e
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3. Consider a 3-dimensional charge density expressed in spherical polar coordinates
o ’ 9
pr.0.¢) = Qoe™ "/ 4 Q,[—o’“ v cosf),
b

where Qg and Q; are constants having the units of charge per unit volume and a and b are
length parameters.

(a) Find an analytic expression for the electrostatic potential as a function of position.

(b) Analyze the potential for r — 0 and describe its qualitative features.

(

=

) Analyze the potential for r — oo and describe its qualitative features. In particular,
can you write the potential in the form

e 1 (4
P(r) "= Tney (; i

and if so, explain
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From Lecture 8:

1
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General form of electrostatic potential with boundary value
r — oo, for isolated charge density p(r):

o)=L [arrPL)

4z, |r—r}
L[] ST 0, 0.)
47z, Sl 4] g

Suppose that p(r)=3" p,,(r)Y,,(6.0)

Im
1 1 (I . Pl g (o
= 00e)= L X O e [ ) [ o)
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For our case:
p(r,0,4) =0 g 0 ge"”"‘: cosd
Pu(r) =4 Qe "

A7 1 ey
P = 7Q1Ze( K

O(r)= LZLY (0,(p)(rll+l J‘O'r.w dr'p,, (r')+ r’fr"” dr'p,, (r'))

g 42+
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e

The figure above shows the cross section of a magnetostatic solenoid which is uniform in the
2 direction (perpendicular to the page). The current flows in the azimuthal & direction;
specifically the current density is given in cylindrical coordinates by:

Jd a<p<h
g hé a<p< .
{ 0 otherwise. @

Here J; is a constant, a and b denote the inner and outer diameters of the cylinder,
respectively, and ¢ = —sin(¢)x + cos()y.
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(a) Show that the vector potential A for this system can be written as

A= f(p)d, @)

e the scalar function f(p) satisfies the equation

1d 1 —podo a<p<h .
ol f(p) =] e 0=0 2 ()
pdp P 0

otherwise.

(b) Find the function f(p) in the three regions: 0 < p < a, a < p < b, and p > b.

(c) Find the B field in the three regions. Check to make sure that your answer is
consistent with what you know about solenoids. (Hint: B = 0 outside the solenoid.)

B
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Integral form of Ampere's law:
$B-ds=p,[1-dA
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. $B-ds=p1,[J-dA
{ Bian/-‘()Jo(b_a)L
B, = uJ,(b-a)
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Integral form of Ampere's law:

PHY 712 Spring 2015 -

Physics of wave guides --
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Fields near the surface on an ideal conductor
Ideal conductor boundary conditions:

nxE =0 n-H =0
S N

Supposé for an isotropic medium: D=gE  J=0E

Maxwell's equations in terms of H and E :
V-E=0 V-H=0

H E
V><E=—ya— VxH = oE + é‘ba—
ot ot

2 0 o
\% —uo-a—ygby F=0 F=EH

Plane wave form for E :

E(r,t):‘)?(Eoeik"’i"") where k = (1, +in,)gl§
c
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Fields near the surface on an ideal conductor -- continued

For our system :
1/2
2
QnR:w L B A
c 2 e,
1/2
2
O 3 N R
c 2 we,
Forg>>1 QnRzgn,z le
c c 2 5

[0}
—~E (r,t) ~ e N (Eoetﬁ-r/(sﬂ'ax )

~nl K ~ I+ip
= H(r,z) R[C kxE(r,t)J i}‘iyﬂdywkxE(r,t)j )‘
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Boundary values for ideal conductor
At the boundary of an

Inside the conductor : ideal conductor, the E
_kls ir/5-ion and H fields decay in the
H(r,t) =e SR(HOe ) direction normal to the

E(r,t): 5/1@%1} x H(r,t) interface.

Ideal conductor boundary conditions:

ﬁxEL=0 prL:o Ho




