PHY 712 Electrodynamics 9-9:50 AM Olin 103

Plan for Lecture 20:

- 1. Review of Mid-term Exam
- 2. Electromagnetic waves within waveguides

03/16/2015

PHY 712 Spring 2015 -- Lecture 20

	Mon: 02/16/2015	Chap. 6	Maxwell's equations	#14 #15	02/18/201
	Wed: 02/18/2015		Electromagnetic energy and force	#15	02/20/201
	Fri: 02/20/2015	Chap. 7	Electromagnetic plane waves	#16	02/23/201
	Mon: 02/23/2015	Chap. 7	Dielectric media	#17	02/25/201
18	Wed: 02/25/2015	Chap. 7	Complex dielectrics	#18	02/27/201
19	Fri: 02/27/2015	Chap. 1-7	Review Take home exam distributed		
Г	Mon. 03/02/2015	APS Meeting	Take-home exam (no class meeting)		
Н	Wed. 03/04/2015	APS Meeting	Take-home exam (no class meeting)		
Н	Fri. 03/06/2015	APS Meeting	Take-home exam (no class meeting)		
Н	Mon. 03/09/2015	Spring Break	Tallo Tillio Silain (Til Silain Silai		
Н	Wed. 03/11/2015	Spring Break			
\vdash					
L	Fri. 03/13/2015	Spring Break			
-	Mon: 03/16/2015	Chap. 8	Review Exam; Wave guides	#19	03/18/201
21	Wed: 03/18/2015	Chap. 8	Wave guides	#20	03/20/201

Review of Mid-Term Exam Problems

 $1. \ \, {\rm Consider} \ {\rm the} \ {\rm following} \ {\rm one-dimensional} \ {\rm charge} \ {\rm distribution} \ {\rm in} \ {\rm vacuum} ;$

$$\rho(x) = \begin{cases}
0 & x < -a/2 \\
\rho_0 \cos(\pi x/a) & -a/2 \le x \le 3a/2 \\
0 & x > 3a/2
\end{cases}$$

where ρ_0 is a constant having the units of charge per unit volume and a is a length constant It is assumed that the charge density and all related fields are uniform in the y and z directions.

(a) Find the electrostatic potential as a function of x for all $-\infty \le x \le \infty$ due to this charge distribution, assuming the boundary conditions

$$\left.\frac{d\Phi(x)}{dx}\right\rfloor_{-\infty}=0\quad \text{ and }\quad \left.\frac{d\Phi(x)}{dx}\right\rfloor_{\infty}=0.$$

- (b) Determine the value of $\Phi(x = \infty) \Phi(x = -\infty)$.
- (c) Determine the corresponding x-component of the electrostatic field as a function of x:

$$E_x(x) = -\frac{d\Phi(x)}{dx}$$
.

(d) Find the corresponding electrostatic energy W and electrostatic energy density w(x) discussed in Eqs. 1.54 and 1.55 of your textbook.

Use Maple or another program to generate plots of your results. $\,$

03/16/2015

Potential is determined up to a constant:

$$\Phi(x) = \frac{1}{\epsilon_0} \left(\int_{-\infty}^x du \ u \rho(u) + x \int_x^\infty \rho(u) du \right)$$

03/16/2015

Consider the area shown in the diagram above where $0 \le x \le 4h$ and $0 \le y \le 3h$. A charge density within this area is given by

$$\rho(x, y) = \rho_0 \sin \left(\frac{\pi x}{4h}\right) \sin \left(\frac{\pi y}{3h}\right).$$

In this problem, you will find the corresponding electrostatic potential $\Phi(x,y,)$ with the boundary conditions $\Phi(0,y)=\Phi(x,0)=\Phi(4h,y)=\Phi(x,3h)=0$, using 3 different methods.

- (a) First find analytic form for Φ(x, y) using Green's functions or other methods of your choice.
 (b) Now find the numerical approximation to Φ(x, y) using the finite difference method discussed in class and in your text book. Compare your numerical results with the analytic results.
- (c) Finally find the numerical approximation to $\Phi(x,y)$ using the finite element method discussed in class and in your text book. Compare your numerical results with the analytic results.

03/16/2015

PHY 712 Spring 2015 -- Lecture 20

Poisson equation:

 $\nabla^2 \Phi(x, y) = -\frac{\rho(x, y)}{\epsilon_0} \quad \text{where} \quad \rho(x, y) = \rho_0 \sin\left(\frac{\pi x}{4h}\right) \sin\left(\frac{\pi y}{3h}\right)$

$$\Phi(x,y) = \frac{\rho_0}{\epsilon_0 \left(\left(\frac{\pi}{4h}\right)^2 + \left(\frac{\pi}{3h}\right)^2 \right)} \sin\left(\frac{\pi x}{4h}\right) \sin\left(\frac{\pi y}{3h}\right)$$

Exact values on grid points: $\Phi(h,h) = \Phi(h,2h) =$

$$\Phi(3h,h) = \Phi(3h,2h) = \frac{\rho_0 h^2}{\epsilon_0} 0.3573866880$$

$$\Phi(2h,h) = \Phi(2h,2h) = \frac{\rho_0 h^2}{\epsilon_0} 0.5054211012$$

03/16/2015

0 h PHY 712 Spring 2015 -- Lecture 20

3h

2h

For numerical solutions, refer to Lecture 5: Finite difference:

 $S_A \equiv \qquad \Phi(x+h,y) + \Phi(x-h,y) + \Phi(x,y+h) + \Phi(x,y-h)$ $S_B \equiv \qquad \Phi(x+h,y+h) + \Phi(x-h,y+h) + \Phi(x+h,y-h) + \Phi(x-h,y-h)$

 $\Phi(x,y) - \frac{1}{5}S_A - \frac{1}{20}S_B = \frac{3h^2}{10\varepsilon_0}\rho(x,y) + \frac{h^4}{40\varepsilon_0}\nabla^2\rho(x,y).$

Linear algebra problem of the form: Mx = bwhere, if no symmetry is used, M is a 6 \times 6 matrix:

$-\frac{1}{5}$	0	$-\frac{1}{5}$	$-\frac{1}{20}$	0
1	$-\frac{1}{5}$	$-\frac{1}{20}$	$-\frac{1}{5}$	$-\frac{1}{20}$
$-\frac{1}{5}$	1	0	$-\frac{1}{20}$	$-\frac{1}{5}$
$-\frac{1}{20}$	0	1	$-\frac{1}{5}$	0
$-\frac{1}{5}$	$-\frac{1}{5}$	$-\frac{1}{5}$	1	$-\frac{1}{20}$
$-\frac{1}{20}$	$-\frac{1}{5}$	0	$-\frac{1}{5}$	1
	$ \begin{array}{r} 1 \\ -\frac{1}{5} \\ -\frac{1}{20} \\ -\frac{1}{5} \\ 1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

2h 3h 4h

03/16/2015

PHY 712 Spring zo 15 -- Lecture zo

Finite element method: $\Phi(x,y) = \sum_{ij} \psi_{ij} \phi_{ij}(x,y),$	$\sum_{ij} M_{kl,ij} \psi_{ij} = G_{kl},$
$M_{kl,ij} = \int dx \int dy \nabla \phi_{kl}(x,y) \cdot \nabla \phi_{kl}(x,y) dx$	$\nabla \phi_{ij}(x,y)$
$G_{kl} = \frac{1}{\epsilon_0} \int dx \int dy \phi_{kl}(x, y) \rho(x)$	(x,y)
$\phi_{11}(x,y)$	0.8- 0.6- 0.4- 0.2-

PHY 712 Spring 2015 -- Lecture 20

Convenient choice of finite elements -- $\phi_{ij}(x,y) \equiv \mathcal{X}_i(x)\mathcal{Y}_i(y)$,

$$\mathcal{X}_i(x) \equiv \left\{ \begin{array}{ll} \left(1 - \frac{|x-x_i|}{h}\right) & \text{for } x_i - h \leq x \leq x_i + h \\ 0 & \text{otherwise} \end{array} \right.$$

$$M_{kl,ij} = \left\{ \begin{array}{ll} \frac{8}{3} & \text{for } k = i \text{ and } l = j \\ -\frac{1}{3} & \text{for } k - i = \pm 1 \text{ and/or } l - j = \pm 1 \\ 0 & \text{otherwise} \end{array} \right.$$

Form of *M* for without using symmetry:

03/16/2015

03/16/2015

PHY 712 Spring 2015 -- Lecture 20

$$\rho(r, \theta, \phi) = Q_0 e^{-(r/a)^2} + Q_1 \frac{r}{h} e^{-(r/b)^2} \cos \theta,$$

where Q_0 and Q_1 are constants having the units of charge per unit volume and a and b are length parameters.

- (a) Find an analytic expression for the electrostatic potential as a function of position.
- (b) Analyze the potential for $r \to 0$ and describe its qualitative features.
- (c) Analyze the potential for $r\to\infty$ and describe its qualitative features. In particular, can you write the potential in the form

$$\Phi(\mathbf{r}) \stackrel{r \to \infty}{=} \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r} + \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2} + \dots \right),$$

and if so, explain.

03/16/2015

From Lecture 8:

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \sum_{lm} \frac{4\pi}{2l + 1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{lm}(\theta, \varphi) Y_{lm}^{*}(\theta', \varphi')$$

General form of electrostatic potential with boundary value $r \to \infty$, for isolated charge density $\rho(\mathbf{r})$:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|}$$

$$= \frac{1}{4\pi\varepsilon_0} \int d^3r' \rho(\mathbf{r'}) \left(\sum_{lm} \frac{4\pi}{2l+1} \frac{r'_{sl}}{r'_{sl+1}} Y_{lm}(\theta, \varphi) Y_{lm}^*(\theta', \varphi') \right)$$

Suppose that
$$\rho(\mathbf{r}) = \sum_{lm} \rho_{lm}(r) Y_{lm}(\theta, \varphi)$$

$$\Rightarrow \Phi(\mathbf{r}) = \frac{1}{\varepsilon_0} \sum_{lm} \frac{1}{2l+1} Y_{lm}(\theta, \varphi) \left(\frac{1}{r^{l+1}} \int_0^r r^{r^{2+l}} dr^{l} \rho_{lm}(r^{l}) + r^l \int_r^{\infty} r^{r^{1-l}} dr^{l} \rho_{lm}(r^{l}) \right)$$
13

$$\rho(r,\theta,\phi) = Q_0 e^{-(r/a)^2} + Q_1 \frac{r}{b} e^{-(r/b)^2} \cos \theta$$

$$\rho_{00}(r) = \sqrt{4\pi} Q_0 e^{-(r/a)^2}$$

$$\rho_{10}(r) = \sqrt{\frac{4\pi}{3}} Q_1 \frac{r}{b} e^{-(r/b)^2}$$

$$\rho_{00}(r) = \sqrt{4\pi} O_0 e^{-(r/a)^2}$$

$$\rho_{10}(r) = \sqrt{\frac{4\pi}{3}} Q_1 \frac{r}{h} e^{-(r/h)}$$

$$\Phi(\mathbf{r}) = \frac{1}{\varepsilon_0} \sum_{lm} \frac{1}{2l+1} Y_{lm}(\theta, \varphi) \left(\frac{1}{r^{l+1}} \int_0^r r^{r^{2+l}} dr' \rho_{lm}(r') + r^l \int_r^{\infty} r^{r^{1-l}} dr' \rho_{lm}(r') \right)$$

03/16/2015

PHY 712 Spring 2015 -- Lecture 20

The figure above shows the cross section of a magnetostatic solenoid which is uniform in the $\hat{\mathbf{z}}$ direction (perpendicular to the page). The current flows in the azimuthal $\hat{\phi}$ direction; specifically the current density is given in cylindrical coordinates by:

$$J = \begin{cases}
J_0 \hat{\phi} & a \leq \rho \leq b \\
0 & \text{otherwise.}
\end{cases}$$
(1)

Here J_0 is a constant, a and b denote the inner and outer diameters of the cylinder, respectively, and $\hat{\phi} = -\sin(\phi)\hat{\mathbf{x}} + \cos(\phi)\hat{\mathbf{y}}$.

(a) Show that the vector potential ${\bf A}$ for this	system can be written as	
A :	$= f(\rho)\hat{\phi},$	(2)
where the scalar function $f(\rho)$ satisfies the	e equation	
$\left[\frac{d^2}{d\rho^2} + \frac{1}{\rho}\frac{d}{d\rho} - \frac{1}{\rho^2}\right]f(\rho)$	$\rho) = \begin{cases} -\mu_0 J_0 & a \le \rho \le b \\ 0 & \text{otherwise.} \end{cases}$	(3)
(b) Find the function $f(\rho)$ in the three region	ns: $0 \le \rho \le a$, $a \le \rho \le b$, and $\rho \ge b$	i.
(c) Find the B field in the three regions. Che consistent with what you know about solutions that the consistent with what you know about solutions are the consistent with the consistent with the consistent with the consistency of the cons		
	Integral form of A	mpere's law:
	$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \int \mathbf{J} \cdot d\mathbf{s}$	A

PHY 712 Spring 2015 -- Lecture 20

03/16/2015

Fields near the surface on an ideal conductor Ideal conductor boundary conditions:

$$\hat{\mathbf{n}} \times \mathbf{E} \Big|_{S} = 0$$

$$\hat{\mathbf{n}} \cdot \mathbf{H} \Big|_{S} = 0$$

Suppose for an isotropic medium: $\mathbf{D} = \varepsilon_b \mathbf{E}$ $\mathbf{J} = \boldsymbol{\sigma} \mathbf{E}$

Maxwell's equations in terms of ${\bf H}$ and ${\bf E}$:

$$\nabla \cdot \mathbf{E} = 0$$

$$\nabla \cdot \mathbf{H} = 0$$

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \qquad \nabla \times \mathbf{H} = \sigma \mathbf{E} + \varepsilon_b \frac{\partial \mathbf{E}}{\partial t}$$

$$\left(\nabla^2 - \mu \sigma \frac{\partial}{\partial t} - \mu \varepsilon_b \frac{\partial^2}{\partial t^2}\right) \mathbf{F} = \mathbf{0} \qquad \mathbf{F} = \mathbf{E}, \mathbf{H}$$

$$F = E, H$$

Plane wave form for ${\bf E}$:

$$\mathbf{E}(\mathbf{r},t) = \Re\left(\mathbf{E}_0 e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right)$$

where
$$\mathbf{k} = (n_R + i n_I) \frac{\omega}{c} \hat{\mathbf{k}}$$

Fields near the surface on an ideal conductor -- continued For our system :

$$\frac{\omega}{c} n_R = \omega \sqrt{\frac{\mu \varepsilon_b}{2}} \left(\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon_b}\right)^2} + 1 \right)^{1/2}$$

$$\frac{\omega}{c} n_I = \omega \sqrt{\frac{\mu \varepsilon_b}{2}} \left(\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon_b}\right)^2} - 1 \right)^{1/2}$$

$$\begin{aligned} & \text{For} \frac{\sigma}{\omega} >> 1 \quad \frac{\omega}{c} n_R \approx \frac{\omega}{c} n_I \approx \sqrt{\frac{\mu \sigma \omega}{2}} \equiv \frac{1}{\delta} \\ \Rightarrow & \mathbf{E}(\mathbf{r}, t) \approx e^{-\hat{\mathbf{k}} \cdot \mathbf{r} / \delta} \mathfrak{R} \Big(\mathbf{E}_0 e^{i\hat{\mathbf{k}} \cdot \mathbf{r} / \delta - i \omega t} \Big) \end{aligned}$$

$$\Rightarrow \mathbf{H}(\mathbf{r},t) \approx \Re\left(\frac{n}{c\mu} \hat{\mathbf{k}} \times \mathbf{E}(\mathbf{r},t)\right) \approx \Re\left(\frac{1+i}{\delta \mu \omega} \hat{\mathbf{k}} \times \mathbf{E}(\mathbf{r},t)\right)$$
03/16/2015
$$\Re\left(\frac{1+i}{\delta \mu \omega} \hat{\mathbf{k}} \times \mathbf{E}(\mathbf{r},t)\right)$$

Boundary values for ideal conductor

Inside the conductor:

$$\mathbf{H}(\mathbf{r},t) = e^{-\hat{\mathbf{k}}\cdot\mathbf{r}/\delta} \Re\left(\mathbf{H}_0 e^{i\hat{\mathbf{k}}\cdot\mathbf{r}/\delta - i\omega t}\right)$$

$$\mathbf{E}(\mathbf{r},t) = \delta\mu\omega \frac{1-i}{2}\hat{\mathbf{k}} \times \mathbf{H}(\mathbf{r},t)$$

At the boundary of an ideal conductor, the E and H fields decay in the direction normal to the interface.

Ideal conductor boundary conditions:

$$\hat{\mathbf{n}} \times \mathbf{E} \Big|_{S} = 0$$

$$\hat{\mathbf{n}} \cdot \mathbf{H} \Big|_{s} = 0$$

03/16/2015