PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103

Plan for Lecture 34:

Special Topics in Electrodynamics:

Electromagnetic aspects of superconductivity

- > London equations
- > Tunneling between two superconductors

20	Mon: 03/16/2015	Chap. 8	Review Exam; Wave guides	#19	03/18/2015
21	Wed: 03/18/2015	Chap. 8	Wave guides	#20	03/20/2015
22	Fri: 03/20/2015	Chap. 9	Radiation sources	#21	03/23/2015
23	Mon: 03/23/2015	Chap. 9 & 10	Radiation and scattering	#22	03/25/2015
24	Wed: 03/25/2015	Chap. 9 & 10	Radiation and scattering		
25	Fri: 03/27/2015	Chap. 11	Special relativity	#23	03/30/2015
26	Mon: 03/30/2015	Chap. 11	Special relativity	#24	04/01/2015
27	Wed: 04/01/2015	Chap. 11	Special relativity	#25	04/06/2015
	Fri: 04/03/2015	Good Friday	No class		
28	Mon: 04/06/2015	Chap. 14	Radiation from moving charges	#26	04/08/2015
29	Wed: 04/08/2015	Chap. 14	Radiation from moving charges	#27	04/10/2015
30	Fri: 04/10/2015	Chap. 14	Radiation from moving charges	#28	04/13/2015
31	Mon: 04/13/2015	Chap. 15	Radiation due to scattering	#29	04/15/2015
32	Wed: 04/16/2015	Chap. 13	Cherenkov radiation	#30	04/17/2015
33	Fri: 04/17/2015		Special topics superconductivity		
34	Mon: 04/20/2015		Special topics - superconductivity		
35	Wed: 04/22/2015		Review		
36	Fri: 04/24/2015		Review		
	Mon: 04/27/2015		Presentations I		
	Wed: 04/29/2015		Presentations II		
	Fri: 05/01/2015		Presentations III & Take home exam		

London model of superconducting state

Recall Drude model of conductivity in "normal" materials

$$m\frac{d\mathbf{v}}{dt} = -e\mathbf{E} - m\frac{\mathbf{v}}{\tau}$$

$$\mathbf{v}(t) = \mathbf{v}_0 e^{-t/\tau} - \frac{e\mathbf{E}\,\tau}{m}$$

$$\mathbf{J} = -ne\mathbf{v}$$
 for $t >> \tau$ $\mathbf{J} = \frac{ne^2\tau}{m} \mathbf{E} \equiv \sigma \mathbf{E}$

Suppose $\tau \rightarrow 0$; London model of conductivity in superconducting materials

$$m\frac{d\mathbf{v}}{dt} = -e\mathbf{E}$$

$$\frac{d\mathbf{v}}{dt} = -\frac{e\mathbf{E}}{m}$$

$$m\frac{d\mathbf{v}}{dt} = -e\mathbf{E}$$

$$\frac{d\mathbf{v}}{dt} = -\frac{e\mathbf{E}}{m}$$

$$\frac{d\mathbf{J}}{dt} = -ne\frac{d\mathbf{v}}{dt} = \frac{ne^2\mathbf{E}}{m}$$
From Maynell's questions:

From Maxwell's equations:

$$\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \qquad \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

PHY 712 Spring 2015 -- Lecture 34

London model, continued

London model of conductivity in superconducting materials

$$\frac{d\mathbf{J}}{dt} = -ne\frac{d\mathbf{v}}{dt} = \frac{ne^2\mathbf{E}}{m}$$

From Maxwell's equations:

$$\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times (\nabla \times \mathbf{B}) = -\nabla^2 \mathbf{B} = \frac{4\pi}{c} \nabla \times \mathbf{J} - \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2}$$

$$-\nabla^2 \frac{\partial \mathbf{B}}{\partial t} = \frac{4\pi}{2} \nabla \times \frac{\partial \mathbf{J}}{\partial t} - \frac{1}{2^2} \frac{\partial^3 \mathbf{B}}{\partial t^3}$$

$$-\nabla^2 \frac{\partial \mathbf{B}}{\partial t} = \frac{4\pi ne^2}{mc} \nabla \times \mathbf{E} - \frac{1}{c^2} \frac{\partial^3 \mathbf{I}}{\partial t}$$

$$-\nabla^2 \frac{\partial \mathbf{B}}{\partial t} = -\frac{4\pi n e^2}{mc^2} \frac{\partial \mathbf{B}}{\partial t} - \frac{1}{c^2} \frac{\partial^3 \mathbf{B}}{\partial t^3}$$

From Maxwell's equations:
$$\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \qquad \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times (\nabla \times \mathbf{B}) = -\nabla^2 \mathbf{B} = \frac{4\pi}{c} \nabla \times \mathbf{J} - \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2}$$

$$-\nabla^2 \frac{\partial \mathbf{B}}{\partial t} = \frac{4\pi}{c} \nabla \times \frac{\partial \mathbf{J}}{\partial t} - \frac{1}{c^2} \frac{\partial^3 \mathbf{B}}{\partial t^3}$$

$$-\nabla^2 \frac{\partial \mathbf{B}}{\partial t} = \frac{4\pi n e^2}{mc} \nabla \times \mathbf{E} - \frac{1}{c^2} \frac{\partial^3 \mathbf{B}}{\partial t^3}$$

$$-\nabla^2 \frac{\partial \mathbf{B}}{\partial t} = \frac{4\pi n e^2}{mc^2} \frac{\partial \mathbf{B}}{\partial t} - \frac{1}{c^2} \frac{\partial^3 \mathbf{B}}{\partial t^3}$$

$$-\nabla^2 \frac{\partial \mathbf{B}}{\partial t} = \frac{4\pi n e^2}{mc^2} \frac{\partial \mathbf{B}}{\partial t} - \frac{1}{c^2} \frac{\partial^3 \mathbf{B}}{\partial t^3}$$

$$\frac{\partial}{\partial t} \left(\nabla^2 - \frac{1}{\lambda_L^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \mathbf{B} = 0 \qquad \text{with } \lambda_L^2$$

with
$$\lambda_L^2 \equiv \frac{mc^2}{4\pi ne^2}$$

PHY 712 Spring 2015 -- Lecture 34

London model - continued

London model of conductivity in superconducting materials

$$\frac{d\mathbf{J}}{dt} = -ne\frac{d\mathbf{v}}{dt} = \frac{ne^2\mathbf{E}}{m}$$

$$\frac{d\mathbf{J}}{dt} = -ne\frac{d\mathbf{v}}{dt} = \frac{ne^2\mathbf{E}}{m}$$
$$\frac{\partial}{\partial t} \left(\nabla^2 - \frac{1}{\lambda_L^2} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\mathbf{B} = 0$$

with
$$\lambda_L^2 \equiv \frac{mc^2}{4\pi ne^2}$$

For slowly varying solution:

$$\begin{split} &\frac{\partial}{\partial t} \left(\nabla^2 - \frac{1}{\lambda_t^2} \right) \mathbf{B} = 0 & \text{for } \frac{\partial \mathbf{B}}{\partial t} = \hat{\mathbf{z}} \frac{\partial B_z(x,t)}{\partial t} : \\ &\Rightarrow \frac{\partial B_z(x,t)}{\partial t} = \frac{\partial B_z(0,t)}{\partial t} e^{-x/\lambda_t} \end{split}$$

$$\Rightarrow \frac{\partial B_z(x,t)}{\partial t} = \frac{\partial B_z(0,t)}{\partial t} e^{-x/\lambda_0}$$

London leap: $B_z(x,t) = B_z(0,t)e^{-x/\lambda_L}$

Consistent results for current density:

$$\frac{4\pi}{c}\nabla\times\mathbf{J} = -\nabla^2\mathbf{B} = -\frac{1}{\lambda_L^2}\mathbf{B} \qquad \mathbf{J} = \hat{\mathbf{y}}J_y(x) \quad \Rightarrow \quad J_y(x) = \lambda_L\frac{ne^2}{mc}\mathbf{B}_z(0)\mathbf{e}^{-\kappa/\lambda_L}$$

04/20/2015

PHY 712 Spring 2015 -- Lecture 34

Behavior of superconducting material - exclusion of magnetic field according to the London model

Penetration length for superconductor: $\lambda_L^2 = \frac{mc^2}{4\pi ne^2}$

 $B_z(x,t) = B_z(0,t)e^{-x/\lambda_L}$

Vector potential for $\nabla \cdot \mathbf{A} = 0$:

$$\mathbf{A} = \hat{\mathbf{y}} A_y(x) \qquad A_y(x) = -\lambda_L B_z(0) e^{-x/\lambda_L}$$

Current density: $J_y(x) = \lambda_L \frac{ne^2}{mc} B_z(0) e^{-x/\lambda_L}$

 $\Rightarrow \mathbf{J} + \frac{ne^2}{mc} \mathbf{A} = 0 \quad \text{or} \quad \frac{ne}{m} \left(m\mathbf{v} + \frac{e}{c} \mathbf{A} \right) = 0$

Typically, $\lambda_L \approx 10^{-7} m$

Magnetization field

Treating London current in terms of corresponding magnetization field M: ${\bf B}{=}{\bf H}+4\pi{\bf M}$

 \Rightarrow For $x >> \lambda_L$, $\mathbf{H} = -4\pi\mathbf{M}$

Gibbs free energy associated with magnetization for superconductor:

$$G_S(H_a) = G_S(H=0) - \int_0^{H_a} dH M(H) = G_S(0) + \frac{1}{8\pi} H_a^2$$

Gibbs free energy associated with magnetization for normal conductor: $G_{\scriptscriptstyle N}(H_a)\approx G_{\scriptscriptstyle N}(H=0)$

Condition at phase boundary between normal and superconducting states:

$$\begin{split} G_N(H_C) &\approx G_N(0) = G_S(H_C) = G_S(0) + \frac{1}{8\pi} H_C^2 \\ &\Rightarrow G_S(0) - G_N(0) = -\frac{1}{8\pi} H_C^2 \\ G_S(H_a) - G_N(H_a) &= \begin{cases} -\frac{1}{8\pi} (H_C^2 - H_a^2) & \text{for } H_a < H_C \\ 0 & \text{for } H_a > H_C \end{cases} \end{split}$$

/up											licT				٠.		
										_	rcc						
											ompile ore sur						1
H	30 6	eniei					ipiei ir	,	pressi		re sur	ercor	iduct	at ringi	n pres	istire.	He
-							superconductor										
Li	Be 0.026						T _c max(K)				В	C	N	0	F	Ne	
14	3.7	T, max(K) P(GPa)								11 250			0.6	4			
Na	Mg	1		P(Gr	a)			14	(GPa)			Al 1.14	Si	P	s	cı	Ar
													8.2 15.2	13 30	17.3 190	4	
K	Ca	Sc	Ti 0.39	5.38 16.5	Cr	Mn	Fe	Co	Ni	Cu	Zn 0.875	Ga 1.091	Ge	As	Se	Br	Kr
	29 217	19.6 106	3.35 56.0	16.5 120			2.1					1.4	5.35 11.5	2.4 32	8 150	1.4	1
Rb	Sr	Y	Zr 0.546		Mo 0.92	Tc 7.77	Ru 0.51	Rh .00033	Pd	Ag	Cd 0.56	In 3.404	Sn 3.722	Sb	Te	1	Xe
	50	19.5	11 30	9.9 10									5.3 11.3	3.9	7.5 35	1.2	1
Cs	Ba	insert La-Lu	0.12	Ta 4.483	0.012	Re 1.4	0.655	Ir 0.14	Pt	Au	Hg-α 4.153	T1 2.39	Pb 7.193	Bi	Po	At	Rn
1.3	5 18		8.6 62	4.5										8.5 9.1			
Fr	Ra	insert Ac-Lr	Rf	Ha													
	\perp	\perp															
		6.00	Ce	Pr	Nd	Pm	Sm	Eu	Gđ	Ть	Dy	Но	Er	Tm	УЪ	Lu	1
		13 15	1.7					2.75 142								12.4 174	1
		Ac	Th 1.368	Pa 1.4	U 0.8(5)	Np	Pu	Am 0.79	Cm	Bk	Cf	Es	Fm	Md	No	Lr	1
					2.4(oc) 1.2			2,2									

Quantization of current flux associated with the superconducting state (Ref: Ashcroft and Mermin, **Solid State Physics**)

From the London equations for the interior of the superconductor:

$$\left(m\mathbf{v} + \frac{e}{c}\mathbf{A}\right) = 0$$

Now suppose that the current carrier is a pair of electrons characterized by a wavefunction of the form $\psi = |\psi| e^{i\phi}$

The quantum mechanical current associated with the electron pair is

$$\begin{split} \mathbf{j} &= -\frac{e\hbar}{2mi} \left(\boldsymbol{\psi}^* \nabla \boldsymbol{\psi} - \boldsymbol{\psi} \nabla \boldsymbol{\psi}^* \right) - \frac{2e^2}{mc} \mathbf{A} \left| \boldsymbol{\psi} \right|^2 \\ &= -\left(\frac{e\hbar}{m} \nabla \phi + \frac{2e^2}{mc} \mathbf{A} \right) \left| \boldsymbol{\psi} \right|^2 \end{split}$$

04/20/2015

PHY 712 Spring 2015 -- Lecture 34

Quantization of current flux associated with the superconducting state -- continued

Suppose a superconducting material has a cylindrical void. Evaluate the integral of the current in a closed path within the superconductor containing the void.

$$\oint \mathbf{j} \cdot d\mathbf{l} = 0 = -\oint \left(\frac{e\hbar}{m} \nabla \phi + \frac{2e^2}{mc} \mathbf{A} \right) |\psi|^2 \cdot d\mathbf{l}$$

$$\oint \mathbf{A} \cdot d\mathbf{I} = \int (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \int \mathbf{B} \cdot d\mathbf{a} = \Phi \quad \text{magnetic flux}$$

$$\oint \nabla \phi \cdot d\mathbf{l} = 2\pi n \qquad \text{for some integer } n$$

 \Rightarrow Quantization of flux in the void: $|\Phi| = n \frac{hc}{2e} = n\Phi_0$

Such "vortex" fields can exist within type II superconductors.

04/20/2015

PHY 712 Spring 2015 -- Lecture 34

Josephson junction -- continued

Quantum mechanical model of tunnelling current

Let $\Psi_{L} = \Psi_{L}^{0} e^{i\phi_{L}}$ denote a wavefunction for a Cooper pair on left Let $\Psi_R = \Psi_R^{\ 0} e^{i\phi_R}$ denote a wavefunction for a Cooper pair on right

$$-i\hbar \frac{\partial \Psi_L}{\partial t} = E_L \Psi_L + \mathcal{E} \Psi_R$$

$$-i\hbar \frac{\partial \Psi_R}{\partial t} = E_R \Psi_R + \mathcal{E} \Psi_L$$
Coupling parameter

PHY 712 Spring 2015 -- Lecture 34

Josephson junction -- continued

Solving for wavefunctions

$$\begin{split} &\frac{1}{2}\frac{\partial\left|\Psi_{L}^{0}\right|^{2}}{\partial t}+i\left|\Psi_{L}^{0}\right|^{2}\frac{\partial\phi_{L}}{\partial t}=-\frac{i}{\hbar}\left(E_{L}\left|\Psi_{L}^{0}\right|^{2}+\varepsilon\Psi_{L}^{0}\Psi_{R}^{0}e^{i(\phi_{R}-\phi_{L})}\right)\\ &\frac{1}{2}\frac{\partial\left|\Psi_{R}^{0}\right|^{2}}{\partial t}+i\left|\Psi_{R}^{0}\right|^{2}\frac{\partial\phi_{R}}{\partial t}=-\frac{i}{\hbar}\left(E_{R}\left|\Psi_{R}^{0}\right|^{2}+\varepsilon\Psi_{L}^{0}\Psi_{R}^{0}e^{-i(\phi_{R}-\phi_{L})}\right)\\ &\left|\Psi_{L}^{0}\right|^{2}\equiv n_{L} \qquad \left|\Psi_{R}^{0}\right|^{2}\equiv n_{R} \quad \phi_{LR}\equiv\phi_{L}-\phi_{R}\\ &\frac{\partial n_{L}}{\partial t}=-\frac{\partial n_{R}}{\partial t}=-\frac{2\varepsilon}{\hbar}\sqrt{(n_{L}n_{R})}\sin\phi_{LR}\\ &\frac{\partial\phi_{L}}{\partial t}=-\frac{E_{L}}{\hbar}-\varepsilon\sqrt{\frac{n_{R}}{n_{L}}}\cos\phi_{LR} \end{split}$$

Josephson junction -- continued

Tunneling current: $J_T = 2e \frac{\partial n_L}{\partial t} = -\frac{4e\varepsilon}{\hbar} \sqrt{(n_L n_R)} \sin \phi_{LR}$

Relationship between superconductor currents $\,J_{\scriptscriptstyle L}\,\,\,$ and $\,J_{\scriptscriptstyle R}\,\,$ and tunneling current. Within the superconductor, denote the generalize current operator acting on pair wavefunction $\Psi = \Psi^0 e^{i\phi}$

$$\hat{\mathbf{v}} = \frac{1}{2m} \left(-i\hbar \nabla - \frac{2e}{c} \mathbf{A} \right) \quad \text{with current } J = \frac{2e}{2} \left(\Psi^* \left(\hat{\mathbf{v}} \Psi \right) + \Psi \left(\hat{\mathbf{v}} \Psi \right)^* \right)$$

6

Josephson junction -- continued

$$\begin{split} &\Rightarrow J_L = \frac{2e}{2m} \left| \Psi_L^{\ 0} \right|^2 \left(\hbar \nabla \phi_L - \frac{2e}{c} \mathbf{A} \right) \equiv 2e n_L \mathbf{v}_L \\ &\Rightarrow J_R = \frac{2e}{2m} \left| \Psi_R^{\ 0} \right|^2 \left(\hbar \nabla \phi_R - \frac{2e}{c} \mathbf{A} \right) \equiv 2e n_R \mathbf{v}_R \\ &\nabla \phi_L = \frac{2m \mathbf{v}_L}{\hbar} + \frac{2e}{\hbar c} \mathbf{A} \qquad \nabla \phi_R = \frac{2m \mathbf{v}_R}{\hbar} + \frac{2e}{\hbar c} \mathbf{A} \\ &\text{Tunneling current:} \quad J_T = 2e \frac{\partial n_L}{\partial t} = -\frac{4e\varepsilon}{\hbar} \sqrt{(n_L n_R)} \sin \phi_{LR} \end{split}$$

Need to evaluate ϕ_{LR} in presence of magnetic field PHY712 Spring 2015 – Lecture 34

Josephson junction -- continued

$$\nabla \phi_L = \frac{2m\mathbf{v}_L}{\hbar} + \frac{2e}{\hbar c}\mathbf{A} \qquad \nabla \phi_R = \frac{2m\mathbf{v}_R}{\hbar} + \frac{2e}{\hbar c}\mathbf{A}$$

Recall that for $x \to -\infty$ $\mathbf{v}_L \to 0$ and $\mathbf{A} \to -(\lambda_L + d/2)B_0\hat{\mathbf{y}}$

for
$$x \to \infty$$
 $\mathbf{v}_R \to 0$ and $\mathbf{A} \to (\lambda_L + d/2) B_0 \hat{\mathbf{y}}$

Integrating the difference of the phase angles along y:

$$\phi_{LR} = \phi_{LR}^0 + B_0(2\lambda_L + d)y$$
Tunneling current: $J_x = -\frac{4e\varepsilon}{\sqrt{(n_L n_R)}} \sin \phi$

Tunneling current: $J_T = -\frac{4e\varepsilon}{\hbar} \sqrt{(n_L n_R)} \sin \phi_{LR}$

Josephson junction -- continued

Integrating the difference of the phase angles along y:

$$\phi_{LR} = \phi_{LR}^0 + \frac{2e}{\hbar c} B_0 (2\lambda_L + d) y$$

Tunneling current density: $J_T = \frac{4e\varepsilon}{\hbar} n_L \sin \phi_{LR}$

Integrating current density throughout width \boldsymbol{w} of superconductors

$$I_{T} = h \int_{-w/2}^{w/2} J_{T} dy = hw J_{T0} \sin(\phi_{LR}^{0}) \frac{\sin(\pi \Phi / \Phi^{0})}{\pi \Phi / \Phi^{0}}$$

where $\Phi = B_0 w (2\lambda_L + d)$ and $\Phi^0 = \frac{2\pi \hbar c}{2e}$ 04/2012015 PHY 712 Spring 2015 – Lecture 34

