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Rep. Prog. Phys., Vol. 45, 1982. Printed in Great Britain 

Surface electronic structure 

J E Inglesfield 
Science and Engineering Research Council, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK 

Abstract 

The theory of the electronic structure of clean metal and semiconductor surfaces is 
reviewed, starting from an effective one-electron Schrodinger equation. Methods for 
solving the Schrodinger equation at surfaces are briefly described, and the effects of 
the surface on the electronic wavefunctions are discussed using simple models. The 
results of detailed calculations of the surface electronic structure of s-p bonded metals, 
transition metals and semiconductors are reviewed, with an emphasis on the effect of 
the local environment on the density of states. Properties like the work function and 
surface energy depend on the surface electronic structure, and their variation with 
material and surface is discussed; the surface energy contains an important contribution 
from the interaction between electrons, and this will be considered in some detail. 
The change in electronic structure compared with the bulk leads to changes in atomic 
structure, with surface reconstruction on semiconductor and some metal surfaces, and 
this is also discussed. The interplay between theory and experiment is very important 
in surface studies, and the theoretical surface energy bands reviewed in this article 
compare well with experimental photoemission results; this comparison has proved 
particularly useful for understanding surface reconstructions. 

This review was received in August 1981. 
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1. Introduction 

As anyone who has suffered from a rusting car knows, surface processes play a 
significant part in our lives-corrosion on the car body, friction in the wear and tear 
on the engine, catalysis in the petrol refining, all occur at surfaces. These processes 
all depend on the interplay between the electronic structure and atomic structure of 
imperfect, dirty surfaces in complicated ways. Before we can tackle these we must 
first understand clean, perfect surfaces, and in recent years there has been great 
progress on both the theoretical and experimental fronts. Self-consistent calculations 
have been made for the electronic structure of many surfaces, giving the charge density, 
density of electronic states (e.g. Krakauer et a1 1979a) and in some cases the surface 
energy (Appelbaum and Hamann 1978): from the charge density, the work function 
can be found-the energy needed to remove an electron from the solid, which is very 
important in devices like image intensifiers; the surface energy is itself important in 
understanding adhesion and wetting. The stable atomic structure depends on the 
electronic structure, and here calculations have shown why some semiconductors 
(Chadi 1978) and metal surfaces (Inglesfield 1981) reconstruct, with the atoms moving 
from the positions they would have in the bulk. 

The surface electronic structure can be probed experimentally using angle- 
resolved photoemission in which the energy distribution of photoemitted electrons is 
studied at different angles (Feuerbacher et a1 1978); encouraging agreement has given 
confidence in calculations of the surface electronic structure (Ihm et a1 1980). Features 
in the photoemission spectra can come from electronic transitions in the bulk of the 
solid (Dietz and Eastman 1978) as well as transitions involving electronic states at 
the surface, but there are experimental methods for separating out the surface features 
(Plummer and Eberhardt 1979)-their insensitivity to photon frequency (bulk transi- 
tions can only take place if hw equals the energy between occupied and unoccupied 
states with the same Bloch wavevector) and the sensitivity to adsorption of H, for 
example (Campuzano et a1 1980). But the most definitive interpretations of photo- 
emission spectra have come from comparison with photoemission calculations which 
themselves involve calculations of the surface electronic structure (Pendry and Hop- 
kinson 1978a). The interdependence of the surface electronic and atomic structure 
means that the comparison between photoemission spectra and calculations can 
sometimes be used to distinguish between possible surface geometries. This is par- 
ticularly useful for a reconstructed surface with a large surface unit mesh, such as the 
(7 x 7) reconstructiont of Si (111) (Chadi et a1 1980), or when there is no long-range 
order (Chabal et a1 1981). In such cases the usual method of determining the surface 
atomic structure, analysis of low-energy electron diffraction (LEED) data (Pendry 
1974), may be impractical. The electrostatic potential at the surface can be probed 
using x-ray photoemission, in which an electron is emitted from an atomic core level, 
whose energy depends on the local potential: this is useful for studying charge transfer 
at the surface (Brennan et a1 1980). Photoemission is certainly the most powerful 

t A (1 x 1) surface has the unit mesh obtained by continuing the bulk structure to the surface, with lattice 
vectors a, b. A (m X n) surface has a unit mesh with lattice vectors ma, nb. 



226 J E Inglesfield 

experimental probe, but field emission has also been useful (Plummer and Gadzuk 
1970), in which an applied electric field pulls electrons very close to the Fermi level 
out of the solid. 

An atom at the surface is in an environment midway between the bulk and the 
isolated atom, and this is reflected in the ‘local density of states’, which is the charge 
density of electrons at a particular energy. The local density of states at a surface is 
made up of the tails of bulk wavefunctions, as well as an extra type of solution of the 
Schrodinger equation-surface states-which are wavefunctions localised at the sur- 
face (Forstmann 1978). Surface states are greatly influenced by the surface atomic 
structure, and play an important role in the reconstruction of semiconductors (Appel- 
baum and Hamann 1975) (but probably not metals). Surface states occur both on 
semiconductor and metal surfaces, but on semiconductors they sometimes have the 
character of dangling bonds (Appelbaum and Hamann 1973)-chemical bonds which 
are cut when the surface is made. The interpretation of the electronic structure in 
terms of local chemical bonds works quite well on semiconductor and insulator surfaces, 
but is not so useful for metals whose valence orbitals are less directional, and whose 
bonding is not covalent. As in the bulk metals, where the free-electron model is 
useful, the surface of jellium, in which the atomic potentials are smeared out into a 
uniform positive background, provides a useful starting point for understanding the 
surface electronic structure of metals like Na and A1 (Lang 1973). In the transition 
metals where the d electrons dominate the bonding, the tight-binding (LCAO) method 
provides a useful starting point (Friedel 1973). The change in the local density of 
states at the surface of transition metals can, in fact, lead to changes in magnetism, 
with the possibility of reduced magnetism at the surface of ferromagnets (Liebermann 
et a1 1970) or ferromagnetism at the surface of paramagnets (Akoh and Tasaki 
1978). 

The calculation of surface electronic structure is made possible because it is a 
good approximation to treat the interaction between electrons within a one-electron 
formalism: each electron moves in an effective potential due to the smeared-out charge 
density of all the other electrons (Kohn and Sham 1965). This approach can be fully 
justified as far as the calculation of the ground-state properties like charge density 
and energy are concerned (Hohenberg and Kohn 1964)-at least, we know that the 
effective potential exists and the approximation comes in finding it. The one-electron 
approach also works remarkably well in calculating the electronic excitations probed 
in photoemission experiments (Dietz and Eastman 1978). However, there are some 
genuine many-body effects at surfaces, with the possibility of collective electron 
oscillations localised at the surface, the surface plasmons, which can be excited in 
electron energy-loss experiments (Krane and Raether 1976). The surface plasmons 
are responsible for the image interaction of an external charge with a surface (Ritchie 
1972) and for the van der Waals’ interaction (Inglesfield and Wikborg 1975). But as 
far as surface bonding and electronic structure are concerned-the subject of this 
review-we can neglect many-body effects explicitly and work with an effective 
single-particle Schrodinger equation. This is by no means trivial to solve as the 
potential felt by an electron does not have the full three-dimensional symmetry of 
the bulk crystal, and the effective potential due to the other electrons must be 
determined self-consistently, by iteration. It is the complexity and scale of this 
computing task which held up really reliable surface calculations until comparatively 
recently, and even now plenty remains to be done. 
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1 . 1 .  Units 

Atomic units are used, with e = h = m = 1. The unit of energy is the Hartree (4.359 X 

lo-'* J), though sometimes we shall use eV (27.2 eV = 1 au); the unit of length is the 
Bohr radius (5.292 x lo-'' m). The electron density is usually given in terms of r,, 
the radius of a sphere containing one electron. 

2. Electronic states at the surface 

2.1. The Schrodinger equation at the surface 

The problem of calculating the electronic structure of a solid with a surface is fairly 
formidable, as there are electrons all interacting with one another, and with the 
ions. We can make progress, however, by replacing the full many-body Schrodinger 
equation by an effective one-particle equation (Kohn and Sham 1965, Lang 1973): 

- i v 2 + i ( r ) + ( C  I oion(r-rI)+ vH(r)+ vxc(r)) + i ( r ) = E i J / i ( r )  (2.1) 

in which the electron feels the potential due to the ions vion, the Hartree potential 
VH(r), the electrostatic potential due to the smeared-out charge density of all the 
other electrons, and the exchange-correlation potential Vxc(r) to allow for the fact 
that the electrons actually move in a correlated way. The ground-state charge density 
is given by a sum over occupied states (each containing two electrons): 

and the ground-state energy by 

EO = 2 C Ei - f  I dr V H ( ~ ) P O ( ~ )  - dr Vxc(r)~~(r) + E x ,  (2.3) 
occupied 

i 

the sum of one-electron energy levels, with the electrostatic Hartree interaction 
subtracted to avoid double counting and the exchange-correlation energy E,, explicitly 
added. The charge density and effective potentials must be determined self- 
consistently, the Hartree potential being given by 

VH(r) = dr' ZI (r - r')po(r').  (2.4) I 
The exchange-correlation potential depends on all the details of the charge density, 
and formally it is the functional derivative of E,, with respect to po: 

(2.5) 

Of course we do not know this functional dependence in general, but it is a good 
approximation to make the local density approximation (Hohenberg and Kohn 1964, 
Kohn and Sham 1965, Lang 1973), in which E,, is written: 

E,, = I dr po(rkxC(po) (2.6) 
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where E&O) is the exchange-correlation energy per electron of an infinite 
homogeneous electron gas with the local density po; V,, then becomes 

Generalisations of the RPA (von Barth and Hedin 1972) or an interpolation scheme 
between the high- and low-density limits (Lang 1973) are usually used to find exc. 

The effective single-particle approach (2.1)-(2.3) can be rigorously justified for 
the ground-state energy and charge density using density functional theory (Hohenberg 
and Kohn 1964); the method is so useful because the local density approximation for 
E,, and V,, (2.6)-(2.7) works well, even when the electron density varies rapidly as 
in molecules (Gunnarsson eta1 1977) and at a surface (Lang and Sham 1975, Langreth 
and Perdew 1977). Moreover it can be generalised to magnetic materials (Wang and 
Callaway 1977) using the spin-polarised local density approximation, in which elec- 
trons with different spin are allowed to have a different density and feel a different 
exchange-correlation potential (von Barth and Hedin 1972). The application to bulk 
band structure calculations has been summarised in a recent review article by Koelling 
(1981). In principle, the energy eigenvalues E ,  and wavefunctions t,bi in (2.1) have no 
individual meaning in density functional theory (Lang 1973)-it is only the ground- 
state quantities constructed from them like po and EO which we can rely on. Neverthe- 
less in practice these energies correspond quite closely to the one-electron excitation 
energies (Dietz and Eastman 1974, Pendry and Hopkinson 1978b, Thiry et a1 1979, 
Eastman et a1 1980): the change in energy when an electron is added or removed 
from the system-in other words, the energy levels which are measured in experiments 
like photoemission. The excitation energies and quasiparticle wavefunctions can, in 
fact, be calculated rigorously from a single-particle Schrodinger equation containing 
an energy-dependent non-local self-energy (Hedin and Lundqvist 1969); this is very 
difficult to calculate except in simple models, but these can be used to find the 
corrections to the excitation energies from (2.1) (Treglia et a1 1980). 

Having simplified the many-body problem we are left with a total effective potential 
V ( r ) ,  due to the positive ions, Hartree and exchange-correlation potentials, of the 
form shown in figure l-as an electron approaches the solid from vacuum it feels the 
image potential, and then a crystal potential which reaches the bulk value within an 
atomic spacing or so from the surface. The image potential, which actually becomes 
the exchange-correlation potential when the electron enters the solid, has the 
asymptotic form: 

V ( z )  - -1/4121 (2.8) 

in the case of metals; there is an extra factor of t compared with the electrostatic 
potential because the image potential is a polarisation energy. The local density 
approximation does not give the asymptotic form of V ( t )  correctly, but rather gives 
an exchange-correlation potential decreasing exponentially into the vacuum, as a 
result of the exponential decay of the tail of the electronic charge distribution. In 
fact, it makes little difference to use the exponential form rather than (2.8) in 
calculations of the ground-state properties (Lang and Kohn 1970), because there is 
so little electronic charge in the region where the asymptotic behaviour prevails (though 
it is important to use (2.8) in calculations of positrons at metal surfaces, as positrons 
may be repelled from the bulk and sit trapped in the -1/41t/ image potential (Pendry 
1980a)). The potential in the actual surface region, i.e. the top layer or two of atoms, 
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Figure 1. Potential at MO (001) surface (averaged parallel to the surface). Arrows mark the positions of 
atomic layers and cp is the work function (Kerker et a1 1978). 

depends crucially on the self-consistently determined charge density. The charge 
redistribution at the surface sets up a surface barrier which determines the absolute 
value of the bulk potential with respect to vacuum, hence the work function cp (figure 
l), and measurement of cp provides a good check on the accuracy of self-consistent 
calculations (§ 5 ) .  As V goes rapidly to the bulk value it is adequate for some purposes 
(in calculations of LEED (Pendry 1974) and photoemission from close-packed metal 
surfaces, for example) to approximate the surface barrier by a step potential, using 
the bulk potential right up to the geometrical surface. 

2.2. Wavefunctions at the surface 

The two-dimensional periodicity of the potential at the surface of a perfect crystal 
means that the wavefunctions can be characterised by a two-dimensional Bloch 
wavevector K (Pendry 1974) such that 

k ( R  +RI, z )=exp  (iK RIMK(R, 2) (2.9) 

a displacement through a surface lattice vector RI multiplies the wavefunction by 
exp (iK - RI). (We choose coordinates so that z is perpendicular to the surface, and 
R = (x, y )  lies in the surface.) K does not label CC, uniquely, and at each wavevector 
there are bands of continuum states coming from the bulk energy bands and possibly 
discrete states-the surface states-localised at the surface; K itself is not given 
uniquely, but a surface reciprocal lattice vector G may be added to it. When an 
electron leaves a solid surface in the photoemission process, going into a plane wave 
in the vacuum, K is conserved (to within G), and this makes angle-resolved photo- 
emission such a powerful tool for studying electron states at the surface. A good 
example of umklapp by G comes from angle-resolved photoemission experiments on 
the W (001) surface: when the W (001) surface is cooled below room temperature 
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I b )  

Figure 2. (a )  W (001) (42x42) R45" surface reconstruction; shaded circles show surface_ atogs and 
open circles the layer beneath. (b )  First Brillouin zone of (1 x 1) structure (full line) and (42 X 42) R45" 
structure (broken line). 

the (1x1 )  structure reconstructs to form a (JZxJZ) R45" structure? (Debe and 
King 1979) (figure 2); extra features then develop in angie-resolved photoemission 
at K = (.rr/a, ~ / a )  corresponding to features in emission normal to the surface (K = 0) 
(Campuzano et a1 1981) (figure 3), due to electrons with K = O  being scattered 
through a new surface reciprocal lattice vector G = (T/u,  r / a ) .  

-2 0 = E ,  
Initial energy (eV)  

Figure 3. Photoemission-ener y distribution for electrons emitted with K = ( r / a ,  r / a )  from W (001) 

features in normal emission (curve C) (Campuzano et al 1981). 
(1 x 1) (curve A) and (42 x P 2) R45" structure (curve B). Features 1 and 2 occur at same energies as 

The Bloch property of (LK means that it is only necessary to solve the Schrodinger 
equation in one surface unit cell, but we must still integrate the equation in the z 
direction-fortunately, the wavefunctions away from the surface can be written in 
terms of solutions of the bulk Schrodinger equation (Heine 1963). The simplest case 
to consider is the step potential model of a free-electron solid surface, with a constant 
potential of - Vo inside the solid (z > 0) and zero in vacuum (z  < 0), actually quite a 
realistic model of s-p bonded metals like A1 in which the pseudopotential is weak. 
The bulk free-electron wave 

( P K , - - L , ( ~ )  = exp [i(K - R - k 2 ) l  (2.10) 

TA ( f i x & )  R45" surface has lattice vectors which are AX the original lattice vectors in length, 
rotated by 45". 
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is reflected by the surface into exp[i(K*R+k,z)] ,  and the full solution of the 
Schrodinger equation at energy E with wavevector K can be written: 

z >0, in solid (2.11) 

$K,E ( r )  = b exp (iK R) exp ($2) z 0, in vacuum (2.12) 

9 
4 K , E ( r )  = ( P K , - k , ( r ) + a ( P K , + k , ( r )  

k, = ( 2 E  -K’)”’ y’ = [ K 2  + 2( vo -E)]1’2. (2.13) 

E is measured from the bulk potential. The coefficients a and b are determined by 
the condition that the amplitude and derivative of $ are continuous across the surface 
at z = 0. 

When the full crystal potential is included, the surface can scatter the incident 
wave by a surface reciprocal lattice vector, and it is necessary to generalise (2.11) 
(Heine 1963). The bulk wavefunctions are usually labelled by the reduced three- 
dimensional Bloch wavevector k and a band index, but for our purposes it is convenient 
to relabel them: the states with reduced wavevector component K parallel to the 
surface and energy E, travelling in the + or - z direction, can be identified uniquely 
by a surface reciprocal lattice vector G. In a nearly-free-electron crystal the energies 
of wavefunctions with reduced three-dimensional wavevector k are given by 

(2.14) 

where g = (gx, g,, g,) is a bulk reciprocal lattice vector. The projection of g onto the 
surface plane, G = (g,., g,), is a surface reciprocal lattice vector (Inglesfield 1978a), so 
for a given K, G and E, + ( k ,  + gz) is determined uniquely; as the shortest bulk reciprocal 
lattice vector perpendicular to the surface equals 2 ~ / d ,  where d is the interlayer 
spacing, this corresponds to a unique value of k ,  in the range -T /d  to +T/d.  We 
can then identify the bulk wavefunctions by (P&,G;E,  where K lies in the surface 
Brillouin zone and + or - identifies the wave as travelling in the positive or negative 
z direction. This labelling still holds when the crystal potential is switched on (Heine 
1963). We can now consider a bulk wave p i , ~ ; E  travelling towards the surface-this 
is reflected and scattered by the surface, and the total wavefunction is given by the 
generalisation of (2.11) (Heine 1963, Appelbaum and Hamann 1972, Pendry 1974): 

$ K , G ; E ( r )  = pK,G;E(r )+C ~G,G,(PL,G,;E(F) z > Q  (2.15) 

with coefficients determined by matching the wavefunction and its derivative onto the 
vacuum wavefunction, or more accurately the vacuum wavefunction integrated through 
the surface barrier region. The sum over reflected waves actually includes waves 
decaying exponentially away from the surface, as well as true bulk wavefunctions 
travelling away from the surface: these correspond to energies lying in a bulk band 
gap, or large values of G in (2.14), when k ,  is complex-such waves which increase 
or decrease exponentially are not allowed in an infinite crystal, but the solution 
decaying away from the surface is allowed in the semi-infinite crystal (Pendry 1974). 

For every wavefunction in the bulk crystal travelling in the negative z direction, 
towards the surface, there is a wavefunction in the crystal with a surface of the form 
given by (2.15), and at fixed K there is a continuum of states as a function of energy, 
except in band gaps where there are no incident waves. The most useful function to 
consider in the continuum is the local density of states (Heine 1980), defined as 

v ( r ,E )=C /$i(r)12S(E-Ei) (2.16) 

6‘ 

I 
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the charge density of electrons with energy E. Sometimes it is convenient to restrict 
the sum over states i to states with a particular wavevector K ;  we can integrate cr or 
uK through the surface atomic cell to give the surface density of states: 

r 
n@)= I d r  u(r, E). 

.surface cell 
(2.17) 

As an example, figure 4 shows the surface density of states for the A1 (001) surface 
at K = (0.1,0.1) au as a function of E, compared with the bulk density of states n b , K  

with the same wavevector. We see that n b , K  has ]E - - ~ ~ l - ~ / *  singularities at the band 
edges, which become ]E  - ~ 0 1 ~ ”  singularities in I t , ,& completely general behaviour 
(Inglesfield 1978a). Except at the band edges ns,K is rather close to &,K, due to the 
A1 atoms at the surface still having 8 of the 12 bulk nearest neighbours: unlike the 
individual wavefunctions which depend on distant boundary conditions, the local 
density of states really is a local property depending mainly on the atom and its 
environment (Heine 1980). 

E (au) 

Figure 4. Surface density of states n S , ~ ( E )  at K = (0.1, 0.1) au for AI (001) (full curve) compared with 
bulk density of states with the same wavevector K (broken curve). 

The A1 (001) surface density of states (figure 4) shows a discrete state in the bulk 
energy gap corresponding to a surface state, a wavefunction localised at the surface. 
In an absolute band gap there are no travelling waves with wavevector component 
K, but it may be possible to construct a wavefunction from the forbidden bulk waves pzzyB which decay exponentially away from the surface (Pendry and Gurman 1975): 

$ K , G ; E ( r )  = C aG,G,p%?k(r). (2.18) 

This crystal wavefunction and its normal derivative must be matched onto the vacuum 
wavefunction, and unlike in the continuum where the matching equations can always 
be solved, this is only possible at discrete energies ; the resulting wavefunction decaying 
exponentially away from the surface in both directions is the surface state. 

The simplest example of a surface state is in the band gap of a nearly-free-electron 
crystal with a one-dimensional potential varying like 

(2.19) 

G‘ 

V ( z )  = 2 v, cos 2rrz/a. 
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This potential opens up an energy gap in the band structure of the infinite crystal at 
k, = * r / a ,  and around k, = r / a  the solutions of the bulk Schrodinger equation can 
be written in the approximate form (Jones 1972): 

(PK,k,(r)=exp(iK'R){a exp(ik,z)+b exp[i(k,-g,)z]} (2.20) 

g, = 2 r / a .  

Substituting this into the Schrodinger equation, and equating coefficients gives the 
matrix equation for a and b :  

(2.21) 

which has a solution when 

(2.22) E = $ K 2 + i ( [ k I  +(k,-g,)2]*{[k~ -(k,-g,)2]2+16Vg} 2 1/2 ). 

If k, is restricted to be real, as in the infinite crystal, this gives an energy gap of 21 V,l 
at k, = r / a .  Energies in the gap correspond to complex k, = K +iy, and substituting 
into (2.22) we find 

K = r / a  
2 1/2 
- (E  - $k2) + [ V i  + 2(E  - fkZ)~2] ' /2 )  . (2.23) 

y starts off from zero at the bottom of the gap, increases to its maximum value of 
about I V,l(r/a)-l close to the middle of the gap and decreases to zero at the top of 
the gap. The corresponding wavefunctions, forbidden in the bulk, have the form: 

vK,k,(r) = exp (iK * R )  exp (T y z )  cos ( r z l a  *,y) (2.24) 

where the phase angle x varies from + ~ / 2  at the bottom of the gap to 0 at the top 
if V, is positive, and between 0 at the bottom and - r / 2  at the top if V, is negative. 
Assuming that the crystal potential (2.19) holds right up to the surface at z = 0 a 
surface-state wavefunction must then have the form: 

4 ~ ( r )  = a exp (iK R )  exp ( -yz )  cos ( r z l a  + x )  z > o  (2.25) 

and with a flat vacuum potential: 

t,bK ( r )  = b exp (iK a R )  exp ( y ' z )  z CO. (2.26) 

The logarithmic derivative of (I, on the crystal side of z = 0 is given by 

(2.27) 

which varies between -CO and - y if V, is positive, and - y and 00 if V, is negative; 
on the vacuum side the logarithmic derivative is positive. So it is possible to match 
the wavefunction at some energy in the gap, and hence obtain a surface state, only 
if V, is negative (Shockley 1939). 

This narrow band gap surface state is called a Shockley state, and the A1 (001) 
surface state shown in figure 4 provides a good example. In a narrow gap the surface 
state extends relatively deeply into the solid, because y in (2.25) is small, but more 
localised states occur in the wider band gaps of semiconductors which correspond to 
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dangling chemical bonds. Another type of surface state occurs in materials in which 
the electrons are relatively tightly bound and the wavefunctions have the LCAO/tight- 
binding form-if the potential at the surface changes enough, a localised state (the 
Tamm state) is pulled off the band edge (Forstmann 1978). 

2.3. Methods of calculating surface electronic structure 

2.3.1. Wuvefunction matching. The first self-consistent calculations were carried out 
by Lang and Kohn (1970) for the surface of jellium, in which the positive ions are 
smeared out into a uniform positive background cut off sharply at the surface and the 
electrons are allowed to redistribute themselves at the surface-this is a good model 
for the s-p bonded (simple) metals like Na and A1 in which the atoms scatter the 
electrons only weakly. Lang and Kohn matched free-electron bulk wavefunctions 
(2.11) onto the solution of the Schrodinger equation integrated from the vacuum 
through the self-consistently determined surface barrier. The surface charge density, 
potential and surface energy were calculated for a range of jellium densities, corre- 
sponding to different metals, and the effects of the weak pseudopotentials included 
by first-order perturbation theory. These calculations have proved very important, 
and we shall consider their implications in $0 3-5. 

The full wavefunction matching procedure, including the crystal potential, has 
been carried out by Appelbaum and Hamann (1972, 1973) for the Na (001) and 
semiconductor surfaces, matching bulk wavefunctions given by (2.15) onto the solution 
of the Schrodinger equation in the surface region. At the surface the potential and 
wavefunctions are expanded as Fourier series over the surface reciprocal lattice vectors: 

V ( r )  = VG(Z) exp (iG R )  
G 

+K(r )  = exp (iK R )  u G ( z )  exp (iG * R) 
G 

and substituting into the Schrodinger equation we obtain a set of 
dimensional differential equations: 

These can be solved given the asymptotic form of UG in the vacuum: 

U G ( Z ) - ~ G  exp (ricz) ,?+--CO 

r b  = [ IK + 61’ + 2( Vo - E)]”2 

(2.28) 

(2.29) 

coupled one- 

(2.30) 

(2.31) 

and the boundary condition that (2.29) matches onto the bulk solution (2.15) over 
some plane inside the solid, away from the surface barrier. A major difficulty in these 
calculations is that the iteration process by which self-consistency is achieved tends to 
be unstable, because the surface potential barrier is an extremely sensitive function 
of charge distribution. Appelbaum and Hamann (1972) use a straightforward iteration 
procedure in which only a fraction of the output potential U,(r) from the charge 
density in the nth iteration is used to construct the input potential V,+l(r) for the 
(n  + 1)th iteration: 

Vfl+,(r)=(l-cu)V,(r)+cuUfl(r). (2.32) 
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More complicated procedures can be used to speed convergence, and Lang and Kohn 
(1970) expand the correction to an approximate charge density in a basis set, with 
coefficients determined by considering the linear response to this correction. 

The wavefunction matching approach has been widely used with a non-self - 
consistent step potential at the surface in LEED calculations (Pendry 1974) in which 
an electron is incident on the surface, and the waves reflected into vacuum must be 
found. It has also been used in field-emission calculations (Nicolaou and Modinos 
1975), in which the potential in the surface region includes the effects of the applied 
electric field. 

2.3.2. Green functions and tight binding. Wavefunction matching methods are not 
ideal for surfaces, as the wavefunctions usually contain more information than we 
need, and are not local properties like u(r, E) (2.16). U is closely related to the 
Green function, which satisfies the inhomogeneous Schrodinger equation: 

(-$: + V(r) - E)G(r ,  r ' ;  E) = S(r - r' ) .  (2.33) 

The formal solution of (2.33) can be written in terms of eigenfunctions and eigenvalues 
of the corresponding homogeneous equation: 

(2.34) 

so the local density of states is given by 

1 
u(r, E )  = - Im G(r, r ;  E +is) .  (2.35) 

7T 

The Green function, hence U, is particularly easy to calculate in tight-binding 
systems in which the atomic orbitals do not overlap very much, as in the 3d, 4d or 
5d bands of the transition metals. In the tight-binding/LcAo approach the atomic 
orbitals (or some other localised orbitals) are used as basis functions, and we consider 
matrix elements of the Green function operator ( H  -E)-': 

where [a,  I )  corresponds to an orbital of type a on atom I. The equivalent of (2.35) 
in the orbital representation is then 

(2.37) 
1 

V,,r(E)=-Im(a, I I (H-E -iS)-'/a, I )  
rr 

i.e. the charge density in orbital la, I )  at energy E. This can be evaluated entirely in 
real space, in terms of an electron hopping from one atom to the next, without any 
consideration of wavefunctions (Heine 1980). One way to do this is to calculate the 
moments of u,,r(E) (Cyrot-Lackmann 1969), the nth moment being defined as 

00 

,U:; = I, d E  E"ua,l(E) 

- m  
1 =-Im dEE"(a ,  II(H-E-iS)-'la, I ) .  
rr I, (2.38) 
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Knowing all the moments, (T, ,~(E)  is determined uniquely. Using contour integration 
we write (2.38) as 

@ L , I  ( n )  - - - f dEE"(a ,  II(H-E-i6)- ' /a,  I )  (2.39) 
2 n i  

where the contour encloses all the poles just below the real axis in a clockwise direction, 
and then from Cauchy's integral formula we obtain 

@!$ =(a ,  IIH"la, I ) .  (2.40) 

This can be evaluated very simply by writing Pi" in full as HHH. . . and inserting the 
set of states Z,,IP, .I)(@, Jl-the unit matrix in this representation-between every 
pair of H :  

(2.41) 

Each term in this summation is just a product of n hopping integrals, or self-energies 
(a , I IHla,I) ,  taking us in n steps from orbital la , I )  out into the crystal and back 
again; by enumerating all these paths of n steps we can find the nth moment. The 
finer details of ( T ~ , ~ ( E )  correspond to the high moments, and we see from (2.41) that 
these depend on probing the environment more and more deeply. 

As this is a real space method it is particularly suitable for surfaces, where there 
is no translational symmetry in the z direction. The French school have applied the 
method of moments widely to find the surface density of states for transition metals 
(DesjonquBres and Cyrot-Lackmann 1975), using fitted hopping parameters, and 
including intra-atomic potential shifts to take rough account of self-consistency. An 
alternative real space approach is based on the tridiagonalisation of the tight-binding 
Hamiltonian matrix (Haydock 1980), and this has been applied to similar problems 
(Kelly 1980). The drawback of tight binding is that the Hamiltonian is not particularly 
accurate, and it is difficult to take proper account of self-consistency, 

@!$ = 1 1 - - + 1 (a ,  IIHlP, JIHIy, K) . . . (A, LlHIa, I ) .  
0,Jv .K h,L 

2.3.3. Slab calculations. The most widely used approach for accurate calculations of 
the surface electronic structure is to consider a finite slab, with two surfaces separated 
by a sufficient thickness of bulk material that each is representative of the surface of 
a semi-infinite crystal. It is ironic that we fall back on this approach, having constructed 
the formal apparatus of finding wavefunctions in a semi-infinite crystal in § 2.2, but 
it gives a finite problem and we can use standard basis function methods for solving 
the Schrodinger equation. 

In one approach the slabs are periodically repeated in the z direction, with vacuum 
in between, giving a three-dimensional 'crystal' with a very large unit cell in the z 
direction (Schliiter et a1 1975). The wavefunctions can then be characterised by a 
three-dimensional Bloch wavevector k, and can be expanded in plane waves; this has 
been applied to metal and semiconductor slabs, replacing the deep ion-core potentials 
by much weaker,,,pseudopotentials to improve convergence. Even so, the problem is 
very large, and in a typical calculation on nine-layer Nb (001) slabs, with a slab-slab 
separation of six atomic spacings, about 1000 plane waves must be used (Louie et a1 
1977). Alternatively, localised orbitals can be used as basis functions for an isolated 
slab (Wang and Freeman 1979). The basis functions are usually taken from numerical 
solutions of the Schrodinger equation for an isolated atom, and unlike in tight-binding 
calculations (§ 2.3.2) the matrix elements of the Hamiltonian are properly evaluated. 
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An approach which has the advantage of localised orbitals in coping well in the 
core region of atoms, and of plane waves in working well between atoms, is the linear 
augmented plane wave (LAPW) method (Jepsen et a1 1978, Krakauer et a1 1979a). 
For the purpose of constructing the basis functions, the slab is divided into three 
regions: muffin tins containing the ion-core potentials, the interstitial region between 

Z 

I 

I I -0'12 --.-.--1-L- 

Figure 5. Slab geometry for LAPW calculations. The slab is divided into three regions: I, muffin-tin spheres; 
11, interstitial region; 111, vacuum region (Krakauer et a[ 1979a). 

atoms and a vacuum region extending out from the surfaces of the slab (figure 5 ) .  In 
the interstitial region the basis functions are sines or cosines: 

(2.42) cos knz 
sin knz (PK,G,n( r )  = exp [i(K + G )  RI { 

where the wavevectors k ,  are chosen so that cp goes to zero on some plane outside 
the slab. Inside the muffin tins, the Schrodinger equation is integrated outwards (with 
a spherically symmetric potential) at some chosen energy, to give the radial function 
ul(r)  and its energy derivative Ul(r);  a linear combination of the U [  and UI is then taken: 

cpK,G,n(r)  = 1 [ A L , K + G , n U l ( r )  + B L , K + G , n U l ( r ) l  YL(a) (2.43) 

such that (2.43) matches in both amplitude and derivative onto (2.42) on the surface 
of the muffin tins. Similarly in the vacuum region the basis function is given by 

L 

(PK,G,n( r )  = exp [ i ( K + G )  * R l [ C K + G , n V K , G ( Z ) + D K + G , n ~ K , G ( Z ) ]  (2.44) 

where o satisfies the Schrodinger equation for an x-y averaged vacuum potential, ~ 

is its energy derivative, and the linear combination is again chosen so that (2.44) 
matches onto (2.42) on the boundary of the vacuum region. This is a very good way 
of constructing the basis set, because U ,  U, U, ~ provide an accurate solution of the 
Schrodinger equation in their respective regions over quite a wide energy range around 
the fixed energy parameter (Krakauer et a1 1979a), and the wavefunction and its 
derivative are continuous across the boundaries between regions (unlike the APW 

method) (Ziman 1972). Moreover, the matrix elements of the full Hamiltonian can 
be found very readily. This makes the LAPW method seem well suited to self-consistent 
slab calculations, and the results to date are encouraging. 
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Self-consistent’ slab calculations represent the present state of the art of finding 
the surface electronic structure, but they are  not the last word: the bulk and surface- 
state wavefunctions are not clearly separated, and with a thin slab (the typical thickness 
is only seven layers) there must be some interaction between the surfaces. This lack 
of separation between the bulk and surface properties also makes it difficult to extract 
the surface energy from such calculations. 

2.3.4. Other methods. One method which has been applied to a wide range of problems 
is the matching Green function method (Inglesfield 1978a, b), in which the Green 
function for an atom at the surface is constructed from Green functions for the isolated 
atom and substrate. Although it is difficult to use this method self-consistently it gives 
reasonable densities of states if a good potential is used in the surface atom (Inglesfield 
1979a). The method is also useful in model calculations, and in calculations of linear 
response functions (Inglesfield 1979b) which can be expressed in terms of G(r, r ’ ;  E ) .  
We have reviewed this method, and other methods of calculating the surface electronic 
structure elsewhere (Inglesfield and Holland 1981). 

3. Surface electronic structure of metals and semiconductors 

Detailed calculations of surface electronic structure, which we shall review in this 
section, show characteristic effects in the local density of states. The surface density 
of states shows a reduction in weight at band edges compared with the bulk, band 
narrowing in transition metals, and different types of surface states-all effects which 
can be understood in terms of the different environment of the surface atoms. In 
wide band gap semiconductors and insulators, where local chemical bonds can be 
used, the surface states have a direct interpretation as dangling bonds. By the second 
layer of atoms, the local density of states and the charge density are already close to 
the bulk values, because the atoms are now in a bulk-like environment. 

The effects of the surface are most marked at band edges (always the least local 
region of locai densities of states), and we saw in figure 4 that ~ z , , ~ ( E )  has an lE - ~ ~ 1 ~ ’ ~  
singularity rather than the /E  - E ~ / - ” *  singularity of the bulk density of states at fixed 
wavevector K (Inglesfield 1978a). The energy band edge eo is a quadratic function 
of K around an extremum in the full three-dimensional bulk density of states, and 
integrating over K, the surface density of states at the bottom of the band, for example, 
varies like 

n,(E) = K d K  ( E - C I K ~ ) ” ~  

(3.1) 

The surface density of states rises more gradually than the bulk density of states, 
which varies like at this band edge. This is shown very clearly in figure 6 which 
gives ( ~ ( z ,  E ) ,  the local density of states integrated over K, for a self-consistent jellium 
potential, as a function of E at different distances t from the surface (Werner et a1 
1975). (+ rapidly approaches the bulk density of states as we move in from the surface, 
though at any finite distance from the surface it varies like E3’2 right at the band edge. 

The removal of weight at band edges gives rise to band narrowing in an isolated 
band of states (Cyrot-Lackmann 1969). The local density of states at the surface of 
a simple cubic crystal with a tightly bound s band (Maydock and Kelly 1973) is shown 

i 
Y ~ 3 / 2  
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Figure 6. m(z, E )  (normalised by charge density po(z))  as a function of E at different distances from the 
surface; calculated for Lang-Kohn potential at rs = 4 au (Werner er a1 1975). 

Figure 7. Local density of states n,(E) on (001) surface ( a )  and sub-surface ( b ) - ( d )  atoms of simple cubic 
s-band solid (Haydock and Kelly 1973). 

in figure 7 ,  and we see once again that the E”2 behaviour of the bulk density of states 
at the band extrema becomes E3” at the surface, with weight being transferred to 
the centre of the band. This band narrowing at the surface can be understood very 
easily using the method of moments which we discussed in 0 2.3.2: the second moment 
of g1(E) measures its mean square width, and from (2.41) this is given by 

where n is the number of neighbours of atom I and h is the hopping integral. But 
n is smaller for a surface atom than for one in the bulk, so the local density of states 
must be narrower (Kelly 1980)-this is found in the tightly bound d bands on 
transition-metal surfaces. From figure 7 we see that the local density of states goes 
rapidly to the bulk value, and even on the second layer it is quite close. 

The changes in the local density of states at a narrow band gap in the band structure 
depend on whether or not a Shockley surface state occurs, because the surface state 
removes weight from the neighbouring band edges. We can show this very clearly by 
considering changes in the integrated density of states: we define &(E),  the integrated 
density of states, as the total number of states in the specimen with wavevector K 
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and energy less than E ,  i.e. 
E 

NK(E) = d E  druK(r ,  E). (3.3) 

The change in NK(E) due to a surface, 8NK(E), can be found directly using the 
matching Green function method without explicit integration of UK (Inglesfield 1978a). 
Figure 8 shows SNK(E) for the surface of a free-electron metal with a one-dimensional 

E lau)  
- 0 . 5  

Figure 8. SNK=o(E),  with V, = +0.02 au and no surface state. 

potential (2.19); taking ?r/u to be 0.822 au and the single Fourier component of the 
potential V, = +0.02 au there is a band gap at K = 0 between E = 0.32 and 0.36 au, 
not containing a surface state as V, is positive. We see first that SNK(E) has discon- 
tinuities corresponding to the loss of a state ut each bund edge-a completely general 
result due to the lE - ~ ~ 1 ~ ’ ~  variation of ~ ( r ,  E) in the presence of a surface (Inglesfield 
1978a). However, the loss altogether of 5 state at the band gap tends to be compensated 
by an increase in the number of states away from the gap. The situation is quite 
different when V, is negative and a surface state occurs, and taking V, = -0.02 au 
(the parameters are appropriate to Al) we obtain 8NK(E) shown in figure 9:  the 
surface state at E = 0.335 au leads to a further reduction in states around the band 
gap, in addition to the a state lost at each band edge. These changes in SNK(E) 
correspond to changes in UK(r ,  E) which are relatively localised at the surface except 
for the very long-range behaviour right at the band edge. 

Figure 9. SNK,~(E) ,  with V, = -0.02 au. 

The effect of the surface state on the local density of states can be seen in figure 
4 where it compensates for the reduction in ns,K(E) compared with the bulk density 
of states around the band gap. On the other hand, the reduction in weight at the 
bottom of the band is compensated for by an increase in ns,K at E = 0.1 au. The 
overall result is that the surface density of states is quite close to the bulk density of 
states, not surprising because the atoms on the A1 (001) surface still have 8 of the 12 
bulk nearest neighbours. 
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3.1. Surfaces of simple metals 

Because the pseudopotentials are weak and the band structures are nearly-free- 
electron-like, a good approximation for s-p bonded (simple) metal surfaces is the 
jellium model in which a uniform positive background is cut off sharply at the surface. 
Self -consistent charge densities calculated in this model by Lang and Kohn (1 970) 
are shown in figure 10 for bulk electron densities of rs = 2 au (corresponding to Al) 

Positive 
background 

8, 
\ 

0 I 

-1 .o 0 
Distance (Fermi wavelerigths) 

I*- - - 
0" 0 5-  

0 I 

-1 0 0 
Distance (Fermi wavelerigths) 

0 

Figure 10. Self-consistent charge density, in uniform positive background model of a metal surface, r, = 2 
(---) and 5 (-) au (Lang and Kohn 1970). 

and r, = 5 au (corresponding to K). The charge density po(z )  shows Friedel oscillations, 
which always occur when a perturbation is applied to a free-electron gas (Ziman 
1972); these vary asymptotically like (Lang and Kohn 1970) 

where kF is the Fermi wavevector and x is the phase shift in an incident wave at the 
Fermi level reflected by the surface ((2.11) can be rewritten as 2 exp (iK R) cos [k,z + 
x(kL)]). In the case of A1 the oscillations are very small, much smaller than in a 
non-self-consistent jellium calculation with a step potential at the surface, and even 
in the low-density case where there is a large overshoot in PO at the first oscillation, 
the charge density has settled down to practically its bulk value within half a Fermi 
wavelength of the surface. The jellium calculations can be. used to find work functions 
(Lang and Kohn 1971) (§ 4) and surface energies (Lang and Kohn 1970) (0 S ) ,  and 
when the effects of the pseudopotential are included by first-order perturbation theory, 
good results are obtained for the whole range of simple metals. 

Self-consistent calculations in which the ionic potentials are included from the 
start have been carried out, using wavefunction matching (Appelbaum and Hamann 
1972) (§ 2.3.1), slab methods (Wang et a1 1981, Ley et a1 1981) (§ 2.3.3) and density 
matrix techniques (Bohnen and Ying 1980), for the alkalis, the alkaline earths and 
Al. In all cases the charge density is similar to the jellium results (figure ll),  though 
the Friedel oscillations are modified by the screening of the ion cores; by the second 
layer of atoms it is close to the bulk value. The results for A1 (111) (Wang et a1 
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Figure 11. Planar averaged valence electron density at AI (111) surface (Wang et ul 1981). 

Figure 12. Contours of charge density at AI (111) surface (Wang et a1 1981). 

1981) (figure 12) provide an example of the smoothing of the surface charge density 
compared with a superposition of atomic charge densities. The charge distribution at 
a surface is a result of competition between the potential energy, which tries to draw 
the electrons into the region where the potential is strong, and the kinetic energy 
which tends to spread the electrons out-the smoothing at the surface, a general 
feature of surface charge redistribution, lowers the kinetic energy. We shall see in 
§ 4 that it is an important effect in determining work function variations from surface 
to surface. These fully self-consistent calculations automatically give the work function 
p, the energy needed to remove an electron at the Fermi energy from the solid. For 
Na (001) (Appelbaum and Hamann 1972, Bohnen and Ying 1980) theory gives 
p = 2.7 eV, in perfect agreement with experiment, and for A1 (111) (Wang et a1 1981, 
Chelikowsky et a1 1975) the theoretical values are 4.73 eV and 5.2 eV, compared 
with the experimental value of 4.26eV; some of the discrepancy in the case of AI 
may be due to the choice of exchange-correlation potential ( 0  2.1). 
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3.1.1. Surface states on Ai. A surface state shows up strongly in angle-resolved 
photoemission experiments on Al, appearing as a sharp peak in the emission intensity 
as a function of the photoelectron energy (Hansson and Flodstrom 1978) (figure 13). 
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Figure 13. Intensity of electrons photoemitted normal to A1 (001) for different photon energies. Peak A 
corresponds to the surface state (Hansson and Flodstrom 1978). 

Initial energy below EF (eV1 

As the wavevector parallel to the surface is conserved in photoemission, different 
angles of emission correspond to different values of K for the initial state, and in this 
way the dispersion of the surface state through the surface Brillouin zone can be 
measured: figure 14 shows the dispersion of the A1 (001) surface state for K in the 
i%l and r% directions, together with the band gap in the bulk band structure (Hansson 
and Flodstrom 1978). Detailed calculations have been made of the A1 (001) surface 
electronic structure which show the surface state (figure 4) (Caruthers et a1 1973, 

I I I \ I  I 
0.0 _ _  0 8  0.4  0 0 4  

r x  - 
K P I  - rFi 

Figure 14. Dispersion of A1 (001) surface state as a function of K in TM and T% directions of surface 
Brillouin zone. Full lines show bulk band edges (Hansson and Flodstrom 1978). 
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Figure 15. Contours of charge density of A1 (001) surface state with K = 0 (Krakauer er al 1981). 

Krakauer et a1 1981), and figure 15 shows its charge density from a self-consistent 
slab calculation. The occurrence and character of this surface state can be understood 
using the simple theory of Shockley surface states given in § 2.2. The band gap is 
due to the pseudopotential component corresponding to the bulk reciprocal lattice 
vector g = 27r/a (0, 0,2), and with respect to an origin halfway between atomic planes 
V, is negative, -0.02 au (Hansson and Flodstrom 1978), so the criterion for the 
occurrence of a Shockley surface state is satisfied. As V, is negative electronic states 
which pile up charge between atomic planes (p-like states) have a lower energy than 
s states which pile up charge on the atoms; however, it is inappropriate to think of 
chemical bonds in A1 and the surface state is not a dangling bond, even though the 
charge density is greatest outside the surface (figure 15). We see from this figure that 
the surface state dies away only slowly into the solid, and in nearly-free-electron 
theory its decay constant is given by 

y = 1 V,l/(g/2) = 0.024 au (3.5) 
corresponding to a decay length of about 20 atomic layers. 

The band gap is absolute for K around the T point at the centre of the surface 
Brillouin zone, but as we move towards the edge of the zone, other bulk bands start 
crossing it and complicate our simple surface-state picture. Figure 16(a) shows the 
bulk A1 band structure as a function of k ,  for several points between 
with K = (K, 0). At  small K they show quite clearly the band gap at k, = 2 r / a  
coming from the interaction between plane waves exp (iKx) exp (ik,z) and 
exp (iKx) exp [i(k, -47r/a)z], with other bands well removed in energy. But as K 
increases, two other bands approach the band gap, coming from plane waves displaced 
from k = (K, 0, k , )  by the bulk reciprocal lattice vectors g = 2 ~ / a  (1,1,1)  and 27r/a 

pll l  = exp {i[(K -27rla)x -27ry/a]} exp [i(kz -27r/a)z] 
(3.6) 

= exp {i[(K - 2 r / a ) x  +27ry/a]} exp [i(k, -27r/a)z]. 

and 

(1, i, 1): 
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Figure 16. AI band structure as a function of k,: ( a )  K between f and M in (001) surface Brillouin zone; 
( b )  K between I? and % (Spanjaard et a1 1979). 

The (0,2,0)  component of the pseudopotential mixes these two plane waves together 
forming the linear combinations: 

cp+ = exp [i(K -2.rrla)xI cos (2rryla) exp [i(k, -2rr/a)z] 
(3.7) 

cp- = exp [i(K -2.rr/a)x] sin (2.rryla) exp [i(kz - 2.rr/a)z] 

which are split in energy by 21 Voz01. As VOZO is positive with respect to an origin on 
the atoms, the sine combination cp- has the lower energy, and meets the bottom of 
our band gap at K = T / U ,  halfway to (figure 16(a)). But cp- is antisymmetric with 
respect to reflection in the y = 0 plane, whereas the surface state which has the 
wavefunction (2.25) : 

4 = exp (iKx) exp ( - -yz) cos (2.rrzla +x) (3.8) 
is symmetric. So the surface state cannot interact with cp- and leak away into it, even 
though it has the same energy as this bulk state. The photoemission results go a little 
beyond K = r r /a  before the surface state moves up through the Fermi energy, and 
confirm that the state remains sharp (Hansson and Flodstrom 1978). 

In the r f  direction, on the other hand, mixing with a bulk band can take place. 
In this direction, K = (K, K ) ,  the band arising from the plane wave: 

cp111= exp {i[(K -2rrla)x + (K  -2rr/a)y]} exp [i(kz -2.rr/a)z] (3.9) 
meets the band gap about halfway to f (figure 16(b)), and now there are no symmetry 
restrictions preventing its interaction with the surface state. Indeed we see that there 
is a splitting when this band crosses the two bands exp [i(Kx +Ky)] exp (ik,z) and 
exp [i(Kx +Ky)] exp [i(k, -4rr/a)z] which give rise to the gap and the surface state. 
Beyond this point a true surface state can no longer occur, as electrons can leak into 
the bulk band carrying flux into the crystal. Nevertheless a peak is still observed in 
the photoemission results (figure 14) (Hansson and Flodstrom 1978) and in calcula- 
tions of the surface density of states (Krakauer et a1 1978, Inglesfield and Holland 
1981): the surface state has become a surface resonance, with a wavefunction extending 
into the bulk, but peaked at the surface. 
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The band gap due to the g = 2 ~ / a  (0, 0,2) component of the pseudopotential can 
give rise to surface states on other surfaces besides the (OOl ) ,  if it remains an absolute 
gap when projected in these other directions. Figure 17, for example, shows the 
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Figure 17. Dispersion of A1 (110) surface state. The shaded area shows the projected band gap around 
X in the bulk band structure (Hansson and Flodstrom 1978, 1979). 

dispersion of an A1 (1 10) surface state measured by angle-resolved photoemission 
around % in the surface Brillouin zone (Hansson and Flodstrom 1978, 1979). The 
surface state lies in the projection of the (2,0,0)  and (0,2,0) band gaps in this 
direction, and as it comes from the same energy gap, its wavefunction is closely related 
to the (001) surface-state wavefunction (Inglesfield and Holland 1981). This is an 
example of the ‘transferability’ of surface states from one surface to another, which 
is also found on transition-metal surfaces (Holmes and Inglesfield 1979). A slab 
calculation by Caruthers et a1 (1974) predicted the surface state at % on A1 (110), 
together with a state at coming from another band gap which also seems to show 
up in the photoemission experiments. 

3.1.2. Surface states on other simple metals. The band gaps in the alkali metals lie 
above the Fermi energy, and a self-consistent slab calculation for the (001) surface 
of BCC? Li gives unoccupied surface states above EF but below the vacuum level 
(Alldredge and Kleinman 1974). Such states will not show up in photoemission 
experiments, of course, but there are techniques for measuring unoccupied states, 
such as appearance potential spectroscopy in which an incident electron drops down 
to an unoccupied state and at the same time excites a core electron (Park and Houston 
1972). The probability for creating the core hole thus depends on a convolution of 
densities of unoccupied states, and can be measured from the soft x-ray or Auger 
electron emission as it decays (Park 1979). This has been used to study unoccupied 
states in the oxidation of Ca, Sr and Ba (Nyberg 1977). Recently it has been shown 
that the inverse photoemission process can be used to study unoccupied bands at 
surfaces (Pendry 1980b, Denninger et a1 1982): a low-energy electron incident on a 
surface drops into an unoccupied level and emits a photon. As the mean free path 
of the incident electron is short, and the matrix element for the process is the same 
as in photoemission, inverse photoemission provides a surface-sensitive technique for 
probing the energy and dispersion of the unoccupied states (0 3.2.3). So far the 

t Body-centred cubic. 
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unoccupied surface state on Li remains unstudied experimentally, but inverse photo- 
emission offers good prospects for observing it. 

Features in the photoemission spectra from polycrystalline Ca, Sr and Ba have 
been identified as surface states by comparison with self -consistent slab calculations 
(Ley et a1 1981). Around T in the Ca (001) surface Brillouin zone a surface state is 
found in the (0, 0,2) band gap (figure 18); this gap is much wider than in A1 because 

Y 1 - 1  
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Figure 18. Surface states on Ca (001) with projected band structure (Ley et a1 1981). 

there is hybridisation between the s-p free-electron band and the 3d level above the 
Fermi energy (McCaffrey et a1 1973). A bulk band structure calculation shows that 
the state at the bottom of the energy gap is a mixture of s and d orbitals, the p-like 
state having higher energy-this shows that the surface state is not a simple narrow 
band gap state to which we can apply the theory of (2.20)-(2.27). 

3.2. Surfaces of transition metals 

The surfaces of transition metals are extensively studied, because of the wide range 
of phenomena they show and their importance industrially as catalysts. Their electronic 
structure is dominated by the d electrons, as in the bulk where the band structure 
consists of five narrow d bands hybridising with the s-p band (figure 19). The 



248 J E Inglesfield 

Centre 

tight-binding method (§ 2.3.2) is useful for understanding the behaviour of the d 
electrons at the surface (Cyrot-Lackmann 1969), though it has now been largely 
superseded by self-consistent slab calculations for quantitative work. 

3.2.1. MO and W surfaces. Because of the reduction in the number of neighbours, 
the d bands are narrowed on surface atoms (3.2), and this is particularly marked on 
the open (001) surface of BCC metals like MO and W, where each atom has only four 
nearest neighbours compared with eight in the bulk. Figure 20 shows the results of 

Energy (eV) 

Figure 20. n,(E) for W (001) in seven-layer slab calculation, compared with densities of states on sub-surface 
layers. The central peak is apparent, in a minimum in the bulk (central layer) density of states (Posternak 
ef a1 1980). 

a slab calculation of the surface density of states for W (001) (Posternak et a1 1980), 
and the main effect of the band narrowing is a characteristic central peak, coinciding 
with a minimum in the bulk density of states; the density of states at the MO (001) 
surface is similar (Kerker et a1 1978). This peak coincides with the Fermi energy-in 
fact, the stability of the BCC structure of W and MO is due to EF lying in the minimum 
in the bulk density of states (Pettifor 1970), which is roughly analogous to a band 
gap between bonding and antibonding states (there is indeed some evidence for 
directional bonding effects in BCC transition metals, with charge in the dxy, d,, and 
d,, orbitals tending to pile up between atoms (Zunger et a1 1979)). We shall see in 
9 6.2 that the peak at E F  in ns is probably responsible for the instability of the ideal 
W and MO (001) surfaces. The peak can be thought of as a virtual bound d state on 
the surface atoms (Friedel 1976): it reflects the environment of the surface atoms 
midway between the isolated atom and the bulk. As we would expect on general 
grounds, the local density of states on the second layer of atoms is very similar to the 
bulk (figure 20), because the local environment is the same. 

The charge density at the W (001) surface is shown in figure 21 (Posternak et a1 
1980), and already by the second layer of atoms it is very close to the bulk with the 
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Figure 21. Contours of charge density at W (001) surface (Posternak et a1 1980). 

lobes in the bonding directions plainly visible. Weight is removed from the bonding 
lobes at the surface, and there is some tendency towards charge density smoothing, 
though not very effective on this open surface. This calculation gives a value of 4.5 eV 
for the W (001) work function, compared with the experimental value of 4.6eV 
(Posternak et a1 1980); for MO (001) Kerker et a1 (1978) obtain cp = 4.3 eV, compared 
with the experimental cp = 4.6 eV. The self-consistent potential also gives immediately 
any shift in the binding energy of the core levels on the surface atoms, a quantity 
which can be measured using x-ray photoemission. The calculation for W (001) 
predicts no surface core shift, in agreement with simple tight binding theory (Posternak 
et a1 1980): as a small transfer of charge leads to a large shift in potential, the surface 
atoms should be almost neutral; because of band narrowing this is achieved by a 
downward shift in potential (greater binding energy of the core level) if the d band 
is less than half full, an upward shift if it is more than half full, and no change in the 
case of W and MO (Feibelman et a1 1979). Recent experiments on W show, in fact, 
an upward shift of 0.30 eV on (110) (Duc et a1 1979) and 0.35 eV on the (001) 
surface (van der Veen et a1 1981). Some of the discrepancy may be due to the effects 
of screening the cere hole in photoemission, which is presumably different at the 
surface and in the bulk. 

3.2.2. Surface states on MO and W (001) surfaces. The central peak in the surface 
density of states is made up of surface states and resonances over the whole of the 
surface Brillouin zone, which tend to occur at this energy. These include a surface 
state at the centre of the surface Brillouin zone (figure 22) which shows up very 
strongly in photoemission experiments at -0.3 eV relative to the Fermi energy on 
MO (001) and -0.4 eV on W (001) (Weng et a1 1978). The W (001) state was, in 
fact, the first surface state to be detected, observed with both field emission (Plummer 
and Gadzuk 1970) and photoemission (Waclawski and Plummer 1972) (it is ideal for 
field emission, being close to EF and having K = 0). At first it was assumed that this 
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Figure 22. Full curves: calculated dispersion of surface states and resonances on W (001) (Posternak et 
al 1980). The data points are experimental photoemission results for W (001) (1 x 1) (Campuzano er a1 
1981). 

/ 

0 1  
0.2 0.6 1 .o 

r H 
kz 

Figure 23. Bulk MO band structure at K = 0. 

state was due to relativistic effects opening up band gaps between the A2, A2, and A5 
bands (Feder and Sturm 1975) (figure 23), but polarisation-dependent photoemission 
measurements have shown that it has AI symmetry, the symmetry of s ,pz and d,z 
orbitals and incompatible with spin-orbit states (Weng et a1 1978). The first calcula- 
tions to explain the T surface state were a self-consistent calculation (Kerker et a1 
1978), and a matching Green function calculation on MO (001) (Inglesfield 1978b, 
1979a). The surface state lies in the s-p,/d,Z hybridisation gap between the AI bands, 
at E = 0.17 au and 0.37 au in the MO band structure shown in figure 23, and does 
not interact with the A2, A2, and As bands because of its AI symmetry. As it lies well 
away from the AI band edges the surface state is well localised, with 60% of its charge 
density lying in the surface atomic cell in the Green function calculation (Inglesfield 
1979a), and more than 90% in the top layer in the W (001) slab calculation (Posternak 
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Figure 24. Contours of charge density of d: surface state at on MO (001) (Kerker et a1 1978). 

et a1 1980). It is essentially a d,. atomic-like state (figure 24), which arises because 
the surface atoms do not interact very strongly with the substrate in the open BCC 
(001) surface. Moving away from f ,  the calculations for both MO and W (001) show 
that this surface state disperses upwards through EF (figure 22)-it actually becomes 
a surface resonance away from K = 0 because the symmetry restriction preventing its 
interaction with the bulk bands no longer applies. 

The W and MO (001) calculations show a pair of surface states/resonances which 
develop close to r, just under EF, and disperse upwards along the i% direction (figure 
22) (Kerker et a1 1978, Posternak et a1 1980). These states are made up of d,, and 
d,, orbitals, involved in bonding to the nearest neighbours in the bulk crystal, mixed 
in with d,, and d,Z-,2 orbitals-in a sense they are dangling bonds (Kerker et a1 1978). 
These states are particularly interesting because it has been suggested that they play 
a role in the phase transitions which the W and MO (001) surfaces undergo: at about 
3 7 0 K  the W (001) surface goes from the (1x1) (apparently ideal) structure to a 
( h x h )  R45" structure (figure 2) (Debe and King 1979) (06.2), and a similar 
phase transition takes place on MO (001) (Felter et a1 1977), though to an incom- 
mensurate structure. Calculations for MO (001) showed that this pair of surface 
states/resonances, crossing EF halfway along fG, have a straight Fermi line, coinciding 
with the new Brillouin zone boundary on the reconstructed surface (Inglesfield 1978~). 
The energy gap opening up along the zone boundary would then lower the energy of 
the occupied states, thereby stabilising the reconstruction. 

The energies of the surface states and resonances on W (001) have recently been 
studied experimentally, using angle-resolved photoemission, over the whole of the 
surface Brillouin zone (figure 22) (Campuzano et a1 1981). The results for the 
high-temperature (1 x 1) W (001) surface are in fair agreement with the calculated 
surface states and resonances along the fG symmetry direction, as we can see from 
figure 22 (calculated for the ideal, unreconstructed surface): the states at T appear 
satisfactorily, and away from a state appears to disperse upwards through EF about 
halfway along FM, However, the nature of this state is controversial (Holmes and 
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Gustafsson 1981), and it is not clear whether it is the upper state of the calculated 
pair in figure 22 (with dzx+zy symmetry), or the dZ2 state with much less dispersion 
than the calculation suggests. The state labelled 3 in figure 22, which has both an 
even and odd component, is in clear disagreement with theory. 

The W (001) photoemission spectra show very interesting changes when the surface 
is cooled down and reconstructs (Campuzano et a1 1980, 1981). Firstly new features 
appear at K = (n-/u, ../a) due to umklapp from K = 0 through the new surface 
reciprocal lattice vector G = (n-/a, n-/a) (figure 3): the peak at -1.4 eV is due to 
photoemission from bulk states at the band edge. But more important there is 
evidence of a band gap opening up at the Fermi energy at K = ( ~ / 2 a ,  7r/2a) where 
the new Brillouin zone boundary appears. Figure 25 shows the photoemission spectra 

Initial energy l e v )  

Figure 25. Difference photoemission spectra (i.e. clean-H-covered) from W-(OOl) at K = (?r/2a, a / 2 a ) ,  
halfway along T M  symmetry line (figure22): (a )  (1x1) gructure; ( b )  ( 4 2 x 4 2 )  R45" structure; (c) 
difference spectra between clean (1 x 1) and clean (42 X 4 2 )  R45" structures (Campuzano et a1 1980, 
19811. 

in the (1 x 1) and ( h x J 2 )  R45" structures, and we see quite clearly that the peak 
due to the surface state at EF is attenuated on reconstruction. The calculated surface 
density of states with K = (7r/2a, n-/2a) (figure 26) shows the splitting of the surface 
states/resonances at this point due to coupling by the G = (n-/a, n-/a) component of 
the surface potential to equivalent states at K = (-n/2a, -.rr/2a), and it is easy to see 
why this leads to a reduction in photoemission intensity. In the (1 x 1) phase the state 
at EF has a wavefunction with a variation along the surface given by 

(CIK - exp (iK * R) K = (7r/2a, n-/2a) (3.10) 

but in the ( J ~ X  42) R45' structure this couples to $-K giving the standing waves 
at the new surface Brillouin zone boundary: 

$+ - JZ COS K R $- - JZs inK.R .  (3.11) 
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Figure 26. Surface density of stags nslK(E) at K = (?r/2a, ?r/2a) (calculated for MO (001)). Full curve: 
(1 x 1) structure; broken curve: ( J 2 X J 2 )  R45" structure (Campuzano er a1 1980, 1981). 
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As only one of these states lies below EF, the matrix element for photoemission into 
the free-electron wave with parallel component exp (iK 0 R) is reduced by a factor 
of 1/&, and the emission intensity reduced on reconstruction. These results appear 
to support the surface-state stabilisation theory of the reconstruction (Inglesfield 
1978c, Tosatti 1978). Unfortunately, when the surface state/resonance is followed 
in angle-resolved photoemission away from FM, the Fermi line is very curved, and 
the surface-state splitting can only involve a minute number of electrons (Campuzano 
et a1 1981). So it seems very unlikely that the surface-state Fermi line plays any role 
in driving the phase transition (Inglesfield 1981), and we shall discuss other mechanisms 
for the surface instability in P6.2. In the meantime we are left with unresolved 
discrepancies between theoretical and experimental surface-state dispersion. 

3.2.3. The Ni (001) surface. The (001) surface of Fcct Ni is comparatively close- 
packed, and this leads to considerable differences in electronic structure from the MO 
and W (001) surfaces. The surface density of states found in a self-consistent slab 
calculation (Arlinghaus et a1 1980) is shown in figure 27-the band narrowing is 
asymmetric, because of an upward potential shift on the surface atoms (Smith et a1 
1980). In the tight-binding picture we would expect an upward shift due to d-band 
narrowing in the case of Ni with nine d electrons, but this cannot be the whole story 
as a self-consistent calculation for Cu (001) with a full d band gives an upward core 
shift of 1.5 eV (Smith et a1 1980). Despite the band narrowing, the surface density 
of states is closer to the bulk on the Ni (001) surface than on the open (001) BCC 
surfaces of MO and W, because each atom still has 8 out of 12 bulk nearest neighbours. 
This is also apparent in the surface density of states with a particular wavevector, and 
figure 28 gives ns ,K(E)  at K = (0.1,0.2) au for Ni (001) compared with the bulk density 

t Face-centred cubic. 
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Figure 27. n,(E) for Ni (001) in nine-layer slab calculation, compared with densities of states on sub-surface 
layers (Arlinghaus et a1 1980). ( a )  Total, ( b )  central plane, (c) second plane from surface, ( d )  surface plane. 

E (nu) 

Figure 28, n,,,(E) (broken curve) at K = (0.1, 0.2) au for Ni (001) compared with bulk density of states 
at this wavevector (full curve) (non-self-consistent matching Green function calculation (Inglesfield 1978b)). 

of states at this wavevector (Inglesfield 1978b). There is considerable structure in the 
surface density of states, with surface states and resonances, but they reflect band 
edge singularities in the bulk density of states. This figure shows the effect we described 
in the introduction to this section-the reduction in weight at the band edges close 
to E = 0.27 au, due to the presence of the surface states. 
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The Ni (001) charge density (figure 29) shows greater smoothing than the W (001) 
charge density (figure 21), as we would expect with its closer packing. The smoothing 
involves the s-p free-electron density which extends further into the vacuum than the 
d-electron density-this remains spherical at the surface as in the bulk with none of 
the bonding effects we see in figure 21. Once again the calculated work function is 
in excellent agreement with experiment: cp = 5.1 eV (Arlinghaus et a1 1980) compared 
with experimental values of 5.0-5.2 eV. It is remarkable that all the work functions 
which we have discussed are so similar, on surfaces with widely differing electron 
density, and we shall discuss the reasons for this in § 4. 

I Vacuum 

Figure 29. Contours of charge density at Ni (001) surface (Arlinghaus et a1 1980). 

The Ni (001) surface (and similarly Cu (001)) shows some characteristic surface 
states. The first surface state predicted for a transition or noble metal was for Cu 
(001) in the s-p/d hybridisation gap, between the AI bands in the rX direction (cf 
the bulk Ni band structure, figure 19) (Gurman and Pendry 1973). Gurman and 
Pendry found a surface state near the bottom of the gap, with a decay length of about 
10 au; this is unlike the W (001) atomic-like hybridisation gap state (0 3.2.2), and as 
it can be derived from a generalisation of the two-band model (2.21)-(2.27) (Pendry 
and Gurman 1975) it is more like a Shockley state. The self-consistent slab calculation 
shows an s-p/d hybridisation gap surface state on Ni (OOl ) ,  at about -9.3 eV around r (figure 30), but it has not yet been identified experimentally. Many other surface 
states and resonances occur close to the band edges, but particularly interesting is a 
surface state above the top of the d bands at M (figure 30). This is a Tamm state, 
pulled off the top of the d bands by the shift in surface potential. At M, the projected 
band structure is in the XW direction in the bulk Brillouin zone, and the topmost d 
band is a very flat band (figure 19) made up of d,, orbitals-these hardly interact in 
the (001) direction, so it is very easy to pull a localised state from them by a small 
shift in the potential at the surface. 
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Figure 30. Energies of states in Ni (001) slab as a function of K. Circles indicate surface states/resonances 
(Arlinghaus ef al 1980). 

In the paramagnetic results for Ni (001) given in figure 30 this Tamm state lies 
about 0.5 eV above the Fermi energy. However, Plummer and Eberhardt (1979) 
have found an apparent surface state just below EF, using angle-resolved photo- 
emission, which has polarisation dependence consistent with d,, orbitals. Now Ni is 
ferromagnetic because the electrons with majority spin feel a more attractive potential 
than those with minority spin, and the effect of this is to pull the majority spin XW 
band below EF (Wang and Callaway 1977); so the observed surface state is probably 
a majority spin Tamm state (Plummer and Eberhardt 1979). A spin-polarised self- 
consistent calculation by Wang and Freeman (1980) confirms that the majority spin 
Tamm state lies just below EF along most of the 7 line in the surface Brillouin zone, 
but unfortunately just above at R where it is still seen experimentally. The equivalent 
Tamm state has been observed on Cu (001) in angle-resolved photoemission, lying 
1.8 eV below EF (Heimann et a1 1979). 

The band structure of FCC transition metals shows a band gap in the free-electron 
s-p band, well above EF in the (001) direction (rX). However, EF lies in this band 
gap in the noble metals in the (1 11) direction (rL), and the corresponding Shockley 
surface state has been seen 0.4 eV below EF in normal photoemission from Cu (111) 
(Gartland and Slagsvold 1975). The same state has been predicted to occur on Ni 
(111) about 0.5 eV above EF (Larsson and Nilsson 1981), where it should be observ- 
able using inverse photoemission (8  3.1.2). 
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3.2.4. Surface magnetism. The change in electronic structure at the surface of transi- 
tion metals suggests that possible changes in magnetic properties should be looked 
for. Recently spin-polarised photoemission experiments have been carried out on Ni, 
and photoemission calculations reproduce the experimental results with a spin splitting 
of the d levels of 0.33 eV, without any change in magnetism at the surface (Moore 
and Pendry 1978). As surface states have been observed on the Ni (110) surface split 
by the same amount (Eberhardt et a1 1980) (within experimental error), this suggests 
little change in magnetism at the surface of Ni-a consequence of the surface density 
of states being similar to the bulk density of states. The magnetism can, in fact, be 
calculated self -consistently using the local spin-density approximation in which spin-up 
and spin-down electrons feel different exchange-correlation potentials (von Barth 
and Hedin 1972). Using this approach Wang and Freeman (1980) find that the 
surface atoms on Ni (001) do indeed remain magnetic, though with a magnetic 
moment reduced by about 20% compared with the bulk'. A contributory factor 
to this reduction is the Tamm state at &l being split off above EF in their calculation 
(0 3.2.3). 

As well as the possibility of reduced magnetism on the surface of a ferromagnet, 
there is also the possibility of a ferromagnetic surface layer on a bulk paramagnet 
(Edwards 1979)-for example, the big peak in the surface density of states on the 
(001) surface of a BCC metal (0 3.2.1) might lead to a ferromagnetic instability if it 
coincides with EF. V, with a nearly half-filled d band and a BCC structure, is a possible 
candidate, and experiments on the temperature dependence of the magnetic sus- 
ceptibility indicate a radius-dependent Curie-Weiss behaviour, coming perhaps 
from surface ferromagnetism, as well as the bulk Pauli susceptibility (Akoh and 
Tasaki 1978). 

3.2.5. Surface states on transition metals: conclusions. We have just seen that the 
surface states on Ni (001) may play a role in surface magnetism, involving as it does 
very small changes in the density of states at EF. The question remains-what role 
do they play in bonding at surfaces? Surface states end resonances from a large part 
of the surface Brillouin zone contribute to the peak in n,(E) at the Fermi energy on 
W (001) and MO (OOl), and we suggest in 0 6.2 that this peak leads to the instability 
of the ideal surface-hence the surface phase transitions. However, the evidence from 
angle-resolved photoemission is that individual surface states play no part in driving 
the phase transition, through the Fermi surface instability mechanism (0 3.2.2). Surface 
states are, of course, sensitive to adsorbed atoms, and their removal by H adsorption 
is one way of recognising them in photoemission experiments. However, this does 
not mean that individual surface states intrinsic to the clean metal surface play a part 
in the bonding of chemisorbed atoms. Clearly an adatom approaching an ideal surface 
destroys the K conservation and once again it is the total surface density of states, 
rather than individual surface states, which is more relevant. (The situation is rather 
different on semiconductor surfaces, as we shall see in 0 3.3, where surface states over 
the whole surface Brillouin zone are equivalent to dangling chemical bonds.) 

The importance of surface states lies chiefly in the way that they illustrate particular 
effects in surface electronic structure: the atomic-like states at on W and MO (001) 
are a result of the open geometry of the surface, other states on these surfaces have 
some of the properties of dangling bonds, and the Tamm states on Ni (001) come 
from the change in surface potential, for example. 
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3.3. Surfaces of semiconductors 

3.3.1. Chemical bonding and surface states. The surfaces of semiconductors provide 
an interface between detailed calculations of surface wavefunctions and simple 
chemical bonding ideas. The bulk energy bands of Ge  and Si can be unfolded into 
an extended zone scheme and are then recognisably distortions of free-electron bands, 
though with a large energy gap on the Jones zone boundary (Heine and Jones 1969). 
From this point of view the electronic structure can be thought of as free-electron-like, 
perturbed by the (rather strong) ionic pseudopotentials; this scheme may even be 
applied to diamond (Phillips 1968). On the other hand, in the chemical bonding 
picture the group IV semiconductors and diamond are held together by local sp3 
bonds-the local description should improve as the band gap increases. The two 
pictures are, of course, related, and a full calculation of bulk electronic structure based 
on band theory produces a piling up of bond charge between atoms (Heine and Jones 
1969). 

The chemical bonding picture explains the general features of the surface electronic 
structure of the group IV semiconductors (Garcia-Moliner and Flores 1976). When 
a Ge, Si or diamond (1 11) surface is made, one sp3 bond directed perpendicular to 
the surface is cut on each atom. Linear combinations of these dangling orbitals give 
surface states with definite K, with energy in the band gap between occupied and 
unoccupied states, so we obtain one band of surface states on the ideal (111) surface. 
Similarly on the (110) surface there are two atoms per surface unit cell, and as one 
bond is cut per atom there should be two bands of surface states; finally on the (001) 
surface, two bonds are cut on the one atom per surface unit cell, again giving two 
bands of surface states. Full calculations of the electronic structure confirm that this 
simple picture is essentially correct, and using the wavefunction matching method 
(a 2.1.1) Appelbaum and Hamann (1973) obtained the surface-state charge density 
for the Si (111) (1 x 1) surface shown in figure 31, with clear dangling bond character. 

x axis ( 8 ,  
Figure 31. Electron density in the dangling bond surface state on Si (111). The dots mark atomic planes 
and the broken curve shows the variation parallel to the surface (Appelbaum and Hamann 1973). 

A simple connection can be made between the chemical bond picture and full 
calculations by using a two-band model to describe the bulk electronic structure with 
an effective pseudopotential matrix element giving the band gap (Jones 1972, Yndurain 
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and Elices 1972). The states at the bottom of the gap are bonding states, so the 
Shockley condition (negative V.) is satisfied (PP 2.2 and 3.1.1) and a surface state 
occurs. This is well localised because the band gap is large. 

The dangling bond surface states contain one unpaired electron per bond, but 
electron paramagnetic resonance experiments show far fewer unpaired electrons than 
this, with one free spin for every 10 or so surface atoms on Si (111) (Haneman 1968), 
and even fewer on Ge (Higinbotham and Haneman 1973). The reason for this is that 
the ideal surfaces are unstable, and the Si, Ge and diamond surfaces reconstruct 
(Marsh and Farnsworth 1964, Haneman 1975) so that the electrons in the dangling 
bonds pair up. We shall discuss the surface reconstructions and relaxations in greater 
detail in subsequent sections, and shall see that they introduce back-bonding surface 
states in addition to the dangling bonds. The freshly prepared surface of silica also 
contains dangling bonds, probably sp3 orbitals on surface Si, largely removed by 
reconstruction and interaction with adsorbed species (Hochstrasser and Antonini 
1972). 

3.3.2. Charge neutrality at semiconductor surfaces. From a chemical bonding point 
of view we would expect dangling bond surface states on an ideal, unreconstructed 
surface to lie at EF so that they are half-filled: this turns out to be true when the 
surface electronic structure is considered in detail. In the simple one-dimensional 
case, we can see from figure 9 that half a state (equivalent to one electron) is lost in 
the valence band when a surface state occurs. So in order to maintain overall charge 
neutrality the surface potential must adjust itself self-consistently till the surface state 
lies precisely at EF and is half-filled (Garcia-Moliner and Flores 1976). The bulk 
material is automatically neutral, as the changes in charge density are localised at the 
surface, and positioning the surface state at EF leads to surface neutrality. The full 
three-dimensional case is more complicated, but it can be rigorously proved that the 
bulk is neutral (at least for (OOl), (110) and (111) surfaces of homopolar semiconduc- 
tors) (Kleinman 1975a, b). States are still removed from the valence band, in particular a state at each band edge (Inglesfield 1978a); the changes in v(r ,  E )  remain localised 
at the surface, and the partial occupancy of surface states ensures surface neutrality, 
and hence overall neutrality. The surfaces need not be neutral, however, in the case 
of zincblende compound semiconductors like GaAs, in which the (1 11) surfaces consist 
ideally of either Ga or As atoms. In this case the surface states position themselves 
relative to EF so that the Ga (111) surface is positively charged and the As ( ? T i )  
surface is negatively charged (Chadi and Cohen 1975). 

The self-consistent positioning of the partially filled surface-state band in the 
middle of the band gap is important in Fermi level pinning at surfaces and interfaces 
of doped semiconductors (Many et a1 1971). 

3.3.3. The Si (111) surface. The (111) surface of cleaved Si reconstructs to form a 
metastable (2 x 1) structure, which on annealing forms the stable (7 X 7) structure 
(Monch 1979). Various models for the (2 x 1) structure have been proposed including 
the Haneman model (Haneman 1961), in which alternate rows of surface atoms are 
raised and lowered, doubling the size of the real space unit cell. This model has 
received strong support from a very useful energy minimisation calculation carried 
out by Chadi (1978) (§ 6.3), who finds that the (111) surface energy is minimised 
with vertical displacements of the surface atoms of +OS9 au and -0.83 au, together 
with lateral displacements in the second layer of atoms which keep the bond lengths 



260 

I I I I 
Valence bands 

J E Inglesfield 

Figure 32. Unit cell for (2 x 1) reconstruction of Si (11 1). Atoms 1 move out of the surface, atoms 2 move 
in and atoms 3 , 4  in the sub-surface layer undergo lateral displacements to keep bond lengths approximately 
constant (Chadi 1978). 

Energy ( e V )  

Figure 33. n,(E) for the Si (111) reconstruction showing splitting of the dangling bond surface states. E, 
is the bulk valence band edge (Schliiter et al 1975). 

angle on reconstruction changes the hybridisation, ancl the dangling bond on the 
lowered atom has more pz character, consequently beiilg raised above the Fermi 
energy, whereas the raised atom has more s character and drops in energy. Electronic 
charge (about 0.3 e )  (Chadi et a1 1980) is transferred from the lowered atoms to the 
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raised atoms, giving a surface with some ionic character; the reduction in energy of 
the occupied states stabilises the reconstruction. In addition to the dangling bonds, 
Schliiter et a1 (1975) find surface states. 0.5 eV below the valence band edge at T, 
dispersing down to -3.5 eV at the zone edge, associated with back bonds between 
the surface atoms and the substrate. Other back-bonding states occur deeper down 
in the valence band. 

Experimental results confirm that a band gap opens up in the surface states, optical 
absorption measurements suggesting a direct gap of 0.26 eV (Chiarotti et a1 1971), 
in good agreement with the calculation of Schliiter et a1 (1975). Photoemission 
experiments also show a gap at EF, and a peak at about -0.8 eV in normal emission 
attributed to the dangling bond surface state (Parke et a1 1980), though this might 
also have a back-bonding surface-state component (Schluter et a1 1975). The deeper- 
lying back bonds also show up in the photoemission experiments, in fair agreement 
with theory (Parke et a1 1980). 

The actual structure of the (7 x 7) form of Si (11 1) is not known for certain, and 
several suggestions have been made including a regular array of surface vacancies 
(Lander and Morrison 1963) or adatoms (Harrison 1976), and periodic lattice displace- 
ments (Tosatti and Anderson 1974). A full analysis of the LEED results has not been 
carried out for this structure, with its large surface unit cell, but a kinematic analysis 
casts doubt on the vacancy and adatom models (Miller and Haneman 1979). The 
reconstruction opens up a gap in the surface-state bands, but there is doubt about 
the density of states at EF, which is clearly related to the extent of the free surface-state 
Fermi line: some photoemission results suggested that the emission from the dangling 
bonds is finite at EF (Rowe et a1 1975), whereas recent work shows a very low density 
of surface states at EF, and a dangling bond peak at -0.8eV as in the ( 2 x 1 )  
reconstruction (Chadi eta1 1980, Hansson et a1 1980). On the basis of atom scattering 
experiments it has now been suggested that the (7 x 7) reconstruction has a completely 
different structure from previous notions-a regular array of large, double-layer islands 
(Cardillo 1981). Support for this has come from LEED experiments on H-covered 
(7 x 7 )  Si (111) which has a much simpler LEED pattern than the clean (7 x 7 )  surface, 
compatible with the island structure (McRae and Caldwell 1981) (figure 34). McRae 
and Caldwell suggest that on the clean (7 x 7) surface the dangling bonds cause a 

Figure 34. Model of Si (111) (7 x 7) reconstruction, with islands and troughs indicated by open and shaded 
areas (McRae and Caldwell 1981). 
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buckling within these islands and troughs, which is removed by H adsorption to give 
a much simpler LEED pattern. The removal of the buckling is analogous to the 
reversion of the Si (111) (2 x 1) structure to a (1 x 1) structure on H adsorption (Ibach 
and Rowe 1974), due to saturation of the dangling bonds by Si-H bond formation. 
This local buckling can clearly explain the resemblance of the (7 x 7) photoemission 
spectrum to the (2 x 1). 

3.3.4. The Si (001) surface. The dangling bonds on the (001) surface of Si cause it 
to reconstruct to a (2 x 1) structure also (Monch 1979), and Chadi (1979a) has found 
that the energy is minimised if the surface atoms move together to form asymmetric 
dimers (figure 35). The atomic displacements obtained in the energy minimisation 
method (0 6.3) are vertical and lateral shifts of +0.08 au and +0.87 au for atoms of 
type 1, and shifts of -0.82 au and -2.04 au for atoms of type 1’ (figure 3 3 ,  with 

Figure 35. Si (001) (2 X 1) reconstruction: ( a )  top view; ( b )  side view (Chadi 1979a). 

smaller displacements extending five layers into the solid. A LEED analysis had 
already shown that a symmetric dimerisation model gave quite good agreement with 
experiment (Jona et a1 1979), but this model gives overlapping surface-state bands 
with a finite density of states at EF (Ihm et a1 1980), in disagreement with photoemission 
results (Himpsel and Eastman 1979). The asymmetric dimer structure, on the other 
hand, gives a band gap in the dangling bond surface states with zero density of states 
at EF (Chadi 1979a). 

In the unreconstructed surface the two dangling bonds per surface atom give rise 
to two bands of surface states in the band gap (Appelbaum et a1 1975). The surface 
states and resonances in the (2 x 1) reconstruction (Ihm et a1 1980) are shown in 
figure 36, calculated with the self-consistent pseudopotential slab method (0 2.3.3), 
and we see that there are still two bands of surface states in the energy gap, even 
though the surface Brillouin zone is halved in size. There are two linear combinations 
of the four dangling bonds per surface unit cell (doubled in size in the reconstructed 
surface), the other two combinations giving states mixed in to the valence and 
conduction bands (Appelbaum et a1 1975). Figure 36 shows that the band gap surface 
states are pushed apart in the asymmetric dimer structure compared with the symmetric 
dimer, giving the zero density of states at EF as observed. Other states shown in 
figure 36, at -10.4 eV and -4 eV at for example, are back-bonding states and states 
localised on sub-surface atoms. 
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Figure 36. Surface states and resonances in Si (001) asymmetric dimer (2 x 1) reconstruction, as a function 
of K in surface Rrillouin zone. The shaded area shows the projected bulk Si bands. The chain curve shows 
surface states for a symmetric dimer reconstruction (Ihm et a1 1980). 

The total charge density in this reconstructed surface is given in figure 37-the 
charge density is bulk-like beyond the second layer, with very clear piling up of 
bonding charge between atoms. In the top layer the reconstruction leads to an 
asymmetric covalent bond between the atoms in the dimer, with charge transferred 
from the lowered atom to the raised atom. The charge transfer comes about because 
the band gap surface state with lower energy has charge concentrated on the raised 
atom (Ihm et a1 1980), as in the (2 x 1) Si (111) surface reconstruction. 

3.3.5. Surfaces of compound semiconductors. The bulk bonding in compound semicon- 
ductors is intermediate between covalent and ionic, and this leads to new types of 
surface states. We shall concentrate on the 111-V and 11-VI compounds which 
crystallise in the zincblende structure, such as GaAs, ZnSe, etc, with cations and 
anions arranged alternately on a diamond lattice. To discuss the bulk electronic 
structure in band structure terms, it is convenient to write the total pseudopotential, 
a superposition of potentials uM on the cations and u X  on the anions, in terms of the 
average potential: 

B = &(OM + V x )  (3.12) 

and a difference potential (Cohen and Heine 1970): 

(3.13) 

The average potential in GaAs and ZnSe, for example, is close to the Ge pseudopoten- 
tial (Ge is in between Ga and As in the periodic table), whereas the difference potential 
increases in going from GaAs to ZnSe, associated with the increase in electronegativity 
difference. The band structures of GaAs and ZnSe are basically similar to that of 
Ge, with four valence bands separated by a band gap from the conduction bands 
(figure 38). However, in the case of the compounds, AV contributes to the main band 



264 

Figure 37. 

J E Inglesfield 

Nntours of charge density at (2 x 1) reconstructed Si (00 ) surface (Ihm et a1 1980). 

gap in addition to 8 :  as the pseudopotential matrix elements are large it is necessary 
to go beyond lowest-order perturbation theory, and the band gap (on the (110) Jones 
zone faces) is given in terms of the effective matrix element V,a (220) (Heine and 
Jones 1969): 

0(111)’+ A v ( l l 1 ) ’  
E l l o - E o o l  

VeR(220) = 0(220) + (3.14) 

We see that the g = 2v /a  (1,1,1) component of the total pseudopotential contributes 
to the gap-in fact, it dominates Veff-and this contains the ionic part of the 
pseudopotential AV, as well as the covalent part 0, The other main effect of AV is to 
open up a band gap between the lowest valence band and the upper three (figure 38) 
(Cohen and Heine 1970). 

We can understand the bulk electronic structure in an alternative way by starting 
at the other extreme-a completely ionic model of the electronic structure, in which 
electrons are transferred from the cations to the anions to fill the s and p orbitals in 
the valence shell. The four valence bands correspond to these occupied anion states, 
the split-off low-lying band corresponding to the s level. As the lowest excitation in 
an ionic molecule like Mz+X2- corresponds to transferring an electron from the anion 
to the cation, we expect the conduction bands to correspond to states localised on 
the cations (though in reality they spread out onto the anions as well). 

The zincblende compounds cleave on the (110) face, which is heteropolar with 
one atom of each type per surface unit cell. Figure 39 shows the surface density of 
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Figure 38. Band structure of GaAs (Cohen and Heine 1970). 
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Figure 39. nJE) for ideal GaAs (I  10) and densities of states on sub-surface layers. Shaded blocks represent 
surface states, and the energy zero is at the valence band edge (Chelikowsky and Cohen 1976). ( a )  Total, 
( b )  layer 5 ,  (c )  layer 3, ( d )  layer 2, ( e )  surface. 

states for GaAs (1 lo), calculated using the self-consistent pseudopotential slab method 
(Chelikowsky and Cohen 1976) (§2.3.3),  and we see that there are two bands of 
surface states associated with the main band gap, with states right at the valence band 
edge strongly localised on the surface As atoms, and those under the conduction band 
edge concentrated on the Ga. These surface states develop from the two bands of 
dangling bond states on the (110) surface of the elemental semiconductor: AV splits 
the bands further, and removes the degeneracy along xa in the surface Brillouin 
zone (figure 40). In the ionic limit (more appropriate to ZnSe than GaAs), the surface 
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Figure 40. (1 10) surface state bands in homopolar semiconductors (upper panel) are split by AV in compound 
semiconductors (lower panel) (Garcia-Moliner and Flores 1976). 

states split off the bulk bands because of the different Madelung potential at the 
surface (Levine and Mark 1966). The removal of neighbouring ions by the surface 
reduces the Madelung potential, raising the energy of an electron on an anion and 
lowering it on a cation. This produces states above the top of the valence band which 
are strongly localised on the anions, and similarly surface states below the conduction 
band which tend to be localised on the cations. The lower band of surface states lies 
below EF and is occupied; as in the case of elemental semiconductors, this cancels 
the loss of states in the valence band and at the band edge, to give overall charge 
neutrality. 

As well as these states in the main band gap, surface states occur at the top of the 
lowest band (figure 39), which are well-localised in s orbitals on the surface As atoms. 
As we would expect from the ionic model of the electronic structure, this lowest band 
is itself concentrated on the As atoms, and it is the change in electrostatic potential 
at the surface which pulls off this band of surface states. Besides these states, there 
are also back-bonding states with energies in the valence band, as in the case of Si. 

The surface states shown in figure39 are not in agreement with experiment: 
angle-resolved photoemission from GaAs (110) shows a band of surface states about 
1 eV below the valence band maximum (Knapp and Lapeyre 1976, Huijser et a1 
1978), lower than the calculation on the unrelaxed surface would indicate for the 
dangling bond/ionic states localised on the As atoms. Moreover, the absence of Fermi 
level pinning in the doped semiconductor shows that there are no unoccupied surface 
states in the band gap (Gudat and Eastman 1976), so the states localised on the Ga 
atoms shown in figure39 must lie above the conduction band minimum. In fact, 
experiments indicate that there are no surface states in the optical band gap on the 
(110) surfaces of InAs, GaSb and GaAs, and only on GaP (110) are there empty 
surface states below the conduction band minimum (Huijser et a1 1977). The reason 
for the absence of surface states is that the surface reconstructs, and analysis of the 
LEED data suggests that the As atoms move out of the surface and the Ga atoms 
move in, rather like the Si (111) reconstruction: a calculation by Chadi (1979b) shows 
that the energy is minimised when the angle of the nearest-neighbour cation-anion 
axis is rotated by 27" from the surface plane, in good agreement with the LEED results 
(Tong et a1 1978). When the reconstruction (actually a relaxation because the surface 
unit cell stays the same) is included, the As-localised dangling bond/ionic states are 
pushed down to about 0.6 eV below the valence band maximum, and the Ga-localised 
states are pushed above the conduction band minimum (Chelikowsky and Cohen 
1979) (figure 41). 
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Figure 41. Surface states and resonances on relaxed GaAs (110) as a function of K in surface Brillouin 
zone. The shaded area shows the projected bulk GaAs bands. The full curves show the calculated results 
(Chelikowsky and Cohen 1979) and the dotted curves experimental results (Huijser et a1 1978). 

4. Work functions 

The work function cp provides an important test of a self-consistent surface potential, 
and the calculations which we have reviewed in the last section give values in good 
agreement with experiment. It is also inherently interesting, as it reflects changes in 
the charge distribution at the surface, and we shall now study it in more detail. A 
surprising property of Q is that it varies remarkably little in going from element to 
element (Rivibre 1969, Nieminen and Hodges 1976); for instance, the work functions 
of s-p bonded metals vary between 2 eV for Cs and 4 eV for Al, whereas the electron 
density varies by a factor of 20 in going from Cs to Al. For the transition metals cp 
tends to lie between 4 and 5 eV, and in the semiconductors Ge and Si it is also about 
4 eV. Q can be divided into two contributions (Seitz 1940, Lang and Kohn 1971)-the 
potential barrier D set up by the redistribution of charge at the surface, and the 
absolute Fermi energy ii of the electrons in the absence of such a surface dipole: 

cp=D-/Z. (4.1) 

The reason why the work function is so constant is that a large electron density, which 
leads to a high value of ,ii because of the high Fermi energy, also gives a large surface 
dipole D. Because of the dipole contribution, cp varies somewhat from surface to 
surface, and experimental examples of this are: 

FCC A1 (Grepstad et a1 1976) 

(111) 4.24 eV (100) 4.41 eV (110) 4.28 eV 
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FCC Cu (Gartland et a1 1972) 

(111) 4.94 eV (100) 4.59 eV (110) 4.48 eV 

BCC W (Strayer et a1 1973) 

(110) 5.25 eV (100) 4.63 eV (111) 4.47 eV. 

The surfaces are listed in order of decreasing atomic density, and we see that there 
is a tendency for the planes of greatest density to have the largest work functions, 
though A1 (1 11) is an exception to this. 

Before we can discuss the separate contributions to cp, we must consider what we 
mean by the redistribution of charge at the surface, defining the system without a 
surface dipole. One convenient choice of reference distribution is to use the bulk 
charge distribution right up to the boundaries of undistorted Wigner-Seitz cells at the 
surface (Nieminen and Hodges 1976) (figure42): ,ii is the absolute Fermi energy 

Figure 42. Schematic bulk Wigner-Seitz cells continued up to the surface. Arrows and wavy line indicate 
charge redistribution at the surface. 

within this system measured from the vacuum zero, and D is the dipole potential 
produced by the deviations of the actual, self-consistent charge density from this 
reference distribution. If the solid is close-packed, the Wigner-Seitz cells are fairly 
spherical, and being neutral each cell produces zero electric field-so the potential in 
the interstitial region between cells is zero in the reference system. This means that 
in the real crystal with redistribution of surface charge, ,ii is EF measured from the 
interstitial potential, and ( -D) is the value of this interstitial potential with respect 
to the vacuum zero. 

Using this reference distribution, Heine and Hodges (1972) have estimated f i  from 
bulk cohesive properties and then calculated D from measured work functions 
(table 1). We see that f i  makes the biggest contribution to the work function in the 
low-density elements like the alkalis, whereas D dominates at high density. The 
tendency of D and p to compensate for each other also seems to be at work in the 
d-bonded transition metals: in the case of Ag Nieminen and Hodges (1976) estimate 
that p is -1.4 eV and D is 2.6 eV, giving a (polycrystalline) work function of 4.0 eV; 
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Table 1. Contributions to work functions of simple metals 
(Heine and Hodges 1972). cp is the work function for polycrys- 
talline materials in this table. 

r, (au) D (eV) F (ev)  cp (eV) 

AI 2.07 3.4 -0.8 4.2 
Zn 2.30 2.9 -1.4 4.3 

Ca 3.27 1.1 -1.6 2.7 
Na 3.93 0.7 -2.0 2.7 
K 4.86 0.2 -2.2 2.4 
c s  5.63 - (-2.2) 2.1 

Mg 2.65 2.0 -1.7 3.7 

on the other hand, in W 6 is much higher, +1.4 eV, but D is also higher, 6.0 eV, 
giving a work function of 4.6 eV. There is really an efficient feedback mechanism at 
work-if p increases, the electrons tend to penetrate further into the vacuum, but 
this sets up a surface dipole to increase the work function and bring down the 
penetration length of the electrons (Heine and Hodges 1972). It is not surprising that 
the work functions of Ge and Si should be in the same range as metal work functions, 
as we saw in § 3.3 that their electronic structure can be obtained by treating the 
pseudopotential as a perturbation on a free-electron gas, and apart from the relatively 
small bonding charge, the charge density is not greatly affected. 

The large surface dipoles listed in table 1 are a consequence of the reference 
surface charge distribution being unrealistic. It is often a good approximation for the 
charge distribution and potential in a solid to superpose the free-atom values, and 
we can use this as our reference system for which D is defined to be zero. The change 
from this charge distribution at the actual surface should then be quite small, giving 
smaller values of D and work functions which are closer to -p.  As an example of 
this, Nieminen and Hodges (1976) discuss Au for which a superposition of free atoms 
gives an electrostatic potential in the interstitial region between atoms of -4.4 eV 
compared with 0 for the Wigner-Seitz reference system. With respect to the latter 
system they estimate that D is 3.6 eV, so the surface dipole is only -0.8 eV with 
respect to a superposition of free atoms. This corresponds to a very small shift of the 
electrons from the free-atom charge distribution. 

4.1. Work function variation and surface smoothing 

The tendency for densely packed surfaces of a particular crystal to have larger work 
functions shows that they have the largest surface dipoles with respect to the Wigner- 
Seitz and atomic charge reference distributions (both of which give an internal 
contribution to the work function independent of crystal surface). The reason for this 
is that the smoothing of the surface charge density, which we encountered in § 3 
(figures 12 and 29), transfers charge to the hollows between atoms on open surfaces 
(figure 42), setting up a negative dipole which reduces cp (Smoluchowski 1941). This 
smoothing is by no means complete, however, and the planar averaged charge density 
p&), calculated for different surfaces of FCC A1 by a variational method (Monnier 
and Perdew 1978), still falls off less abruptly on the open (110) surface than on the 
close-packed (111) surface (figure 43), as we would expect from the atomic charge 
distribution. 
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Figure 43. Planar averaged charge density at different AI surfaces (Monnier and Perdew 1978). -, 
(111); ' ' ' . ., (001); ---, (110). 

4.2. Jellium calculation of work functions 

The work functions of s-p bonded metals can be found from the self-consistent jellium 
calculations of Lang and Kohn (1970, 1971), in which the ions are smeared out into 
a uniform positive background cut off sharply at the surface (§ 3.1). In this model 
there is no difficulty with the reference charge distribution, D being the rise in 
electrostatic potential across the surface due to charge overflow, and g the Fermi 
energy measured from the bulk electrostatic potential: 

= i k :  + vxc, (4.2) 

The results for cp found using Lang and Kohn's jellium charge densities are shown in 
figure 44, and we see that they are in good agreement with experimental values for 
polycrystalline materials. In particular they reproduce the observed trend that the 

4 6 
rr Imi 

Figure 44. Work functions for simple metals. Broken curve: uniform positive background model; crosses: 
corrected with pseudopotential: circles: experimental results for polycrystalline materials (Lang and Kohn 
1971). 
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work function increases only slowly with increasing electron density due to cancellation 
between changes in D and f i .  

The effects of the ionic pseudopotential may be included in Lang and Kohn’s 
results by first-order perturbation theory. To do this properly is a subtle problem, as 
there are first-order changes not only in the mean potential in the solid, hence f i ,  but 
also in the surface charge distribution and D. Lang and Kohn (1971) avoid this 
difficulty by using the fact that cp is the energy change when an electron is removed 
to infinity, and the effects of the pseudopotential on the energy can be found by 
standard first-order perturbation theory: 

(4.3) 

where SV is the change in potential due to the pseudopotential, p N  is the charge 
density with N electrons inside the solid and p N - l  is the charge density when one 
electron is removed to infinity. pN-l can be found by a separate self-consistent 
calculation, in which there is a finite electric field outside the solid and zero field 
inside, and the resulting charge density difference ( ~ ~ - 1 - p ~ )  is localised near the 
surface. The corrected work functions, averaged over different surfaces to compare 
with polycrystalline results, are shown in figure44 and we see that the agreement 
with experiment is excellent. 

5. Surface energy 

Positive energy is needed to create a surface, because each atom has fewer neighbours 
with which to interact. However, it is not an easy quantity to calculate, because of 
the difficulty of separating surface and bulk energy in the energy expression (2.3), 
and cancellation between terms. In the case of semiconductors where there is a close 
connection between the first-principles description of the electronic structure and 
chemical bonding (8  3.31, we should be able to estimate the surface energy from the 
number of broken bonds. As the cohesive energies of Ge and Si are 3.85 eV/atom 
and 4.63 eV/atom, respectively (Kittel 19761, we would expect (111) surface cnergies 
of about 3.85/’4 eV and 4.63/4 eV per surface atom-2200 erg cm-’ for Ge  and 
2900 erg cm-’ for Si, about twice as large as the measured surface energy (Meyer and 
Sparnaay 1975). Chadi (1978) has estimated that the (2 x 1) reconstruction of Si (111) 
(§§ 3.3.3 and 6.3) lowers the energy by 0.36 eV/a:om, reducing the surface energy 
to 2000 erg cm-’. There is still a discrepancy between this and the reported value of 
1200 erg cm-*, showing that the local bonding picture is not particularly accurate. 

The surface energy can also be estimated for transition metals, in which the main 
contribution to the bulk cohesive energy comes from the broadening of the atomic d 
levels into bands (8  3.2) (Gelatt ef a1 1977). At the surface the d bands are narrowed, 
and if we approximate the density of states by a rectangle, its width w and height y 
must satisfy 

wy = 5 (5.1) 
to conserve the number of states, and the second moment (3.2) is given by 

w3y/12 = ah’. (5.21 

The one-electron energy (i.e. the first term in (2.3)) is given by 2y s_“:,, E dE, so with 
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2 electrons the energy per atom is given by 

E = (3/500)”’h&(Z2 - 1 0 2 ) .  (5.3) 
The one-electron contribution to the surface energy is the difference between (5.3) 
for surface and bulk atoms, giving: 

SE = (3/500)1’2h(22- lOZ)(&,-J<) (per atom) (5.4) 

where nb is the number of bulk neighbours and n,  is the number of neighbours at the 
surface. The parabolic dependence of SE on the filling of the d bands is in qualitative 
agreement with experiment, as is its variation with n,  from surface to surface (Cyrot- 
Lackmann 1969): a tendency for the surface energy to be greatest when ns  is least 
(Maiya and Blakely 1967, Grenga and Kumar 1976). The absolute values of the 
surface energy given by the change in one-electron energy are too large, however 
(Cyrot-Lackmann 1969). 

Reliable calculations of surface energy are based on evaluating (2.3) from a 
self-consistent calculation of the electronic structure. This has been carried out for 
the simple metals, in the jellium calculations of Lang and Kohn (1970), a variational 
calculation by Monnier and Perdew (1978) and the density matrix approach of Bohnen 
and Ying (1980). Appelbaum and Hamann (1978) obtained a good value for the 
surface energy of Cu (111) in a self-consistent slab calculation using an LCAO basis 
set (§ 2.3.3). 

5.1. Surface energy of simple metals 

It is convenient to rewrite the total energy of the electron-ion system (i.e. (2.3)+ the 
ion-ion electrostatic interaction) in terms of the electron kinetic energy T, the electron 
exchange-correlation energy E,, and the total electrostatic energy E,, (Kohn and 
Sham 1965): 

with 
E = T+ExC+E,, 

T = 2 1 ei -1 d r  V(r)po(r)  
occupied 

i 

( 5 . 5 )  
Ees = 1 d r  Vion(r  - ~ I ) P o ( ~ )  +2 dr  V H ( ~ ) P O ( ~ )  +Eion-ion- 

I I ‘I 
The contributions of these terms to the surface energy of jellium, in which the positive 
ions are smeared out into the uniform positive background, are shown in table 2 

Table 2. Jellium surface energies (Lang and Kohn 1970). Energies 
are in erg cm-’. 

2 (A0 -5600 1330 3260 -1010 
3 -720 170 750 200 
4 (Na) -145 40 265 160 
5 (K) -30 15 115 100 
6 -5 10 55 60 
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(Lang and Kohn 1970). We see that the change in kinetic energy is negative, because 
the electrons lower their kinetic energy by spilling out of the surface (figure 10). This 
change in charge density increases the electrostatic energy, however-outside the solid 
the Hartree potential of the electrons is no longer cancelled by the potential of the 
positive background. The change in exchange-correlation energy, calculated in the 
local density approximation (2.6), also makes a very large positive contribution to SE. 
Altogether there is considerable cancellation between terms, and the net result is a 
positive surface energy at large r,, in good agreement with experimental results for 
the alkalis (figure 45), but negative at small r,. This reflects the instability of jellium 
at small r,, which wants to increase its volume. 

r ,  (au) 

Figure 45. Surface energies of simple metals. Broken curve: uniform positive background model; bars: 
corrected with pseudopotential; circles: experimental results taken from extrapolation to T = 0 K of liquid 
surface tensions (Lang and Kohn 1970). 

To obtain the correct behaviour at small r, the ionic pseudopotential must be 
included-this can be done quite easily using first-order perturbation theory. When 
this is included the calculated surface energies are in very good agreement with 
experiment (figure 45), even at small r, where the effects of the pseudopotential are 
important. 

5.2. Surface exchange-correlation energy 

Calculations of the surface energy depend to a large extent on the local density 
approximation (§ 2.1), and it is important to know whether this deals realistically with 
the electron-electron interactions in an inhomogeneous system like a metal with a 
surface. Thus the change in zero-point energy of the collective oscillations of the 
electrons-the plasmons-contributes to SE,,, and because these involve long-range 
charge fluctuations it is not immediately clear whether this is an additional contribution 
to the local density approximation, or is somehow implicitly included. 
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The exchange-correlation energy can be found from the dielectric response function 
F, which gives the charge induced by an external charge SpeXt with frequency w 
(Hubbard 1958, Wikborg and Inglesfield 1975, 1977): 

From time-dependent perturbation theory F can be written in terms of the full 
many-body states of the system as 

where 6 is the electron density operator, and U* is the Coulomb interaction between 
the electrons and an external charge. So, integrating over positive frequencies, and 
using completeness we obtain 

J dw Im F(r ,  r r ;  w + ie) = -v[(Olp^(r)v^(r’)jO) - (O~$(r)~O)(O~U*(r’)~O)]. (5.8) 
0 

But the expectation value of the interaction energy between electrons is given by 

Eint = $  I d r  (Ol$(r)U*(r)lO)+constant (5.9) 

so the change in interaction energy when a surface is made is 

I 1 
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6E. int =--joCOdwI d r  I m S F ( r , r ; w + i e ) + $  dr8[VH(r)po(r)] (5.10) 

the first term coming from exchange-correlation effects and the second term being 
the Hartree energy. The total exchange-correlation energy includes the change in 
kinetic energy due to switching on the electron-electron interaction, as well as the 
potential energy given by (5.10), but this can be obtained by integrating over the 
electron interaction strength parameter, giving: 

‘d(e2) CO dw 
SE,, = -Io 7 jo I dr  Im W(r ,  r ;  w +ie).  (5.11) 

This can be evaluated using the random phase approximation, equivalent to the 
time-dependent Hartree approximation in which the induced charge in ( 5  - 6 )  is given 
in terms of the non-interacting response function A by 

(5.12) 

F is related to A by 

F( r ,  r’) = A(r, r’) -+ dr”A(r, r”)F(r”,  r’) (5.13) I 
and as A is proportional to e* it can be shown by integral equation theory that 

(5.14) a 
d rF ( r ,  r) = -ez -1n det (1 -A).  

a(e2) 
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Substituting this into (5.1 1) we finally obtain our expression for the change in exchange- 
correlation energy: -. 

dw m 

SE,, = Im S[ln det (1 -A)]. (5.15) 

A can be found explicitly for certain simple models, and Wikborg and Inglesfield 
(1975, 1977) used (5.15) to calculate SE,, for the infinite barrier model of a metal 
surface, in which the electrons are confined by an infinite potential step at z = 0. To 
show where the contributions to SE,, come from it is convenient to carry out a 
wavevector decomposition of (5.15): 

(5.16) 

and figure 46 shows SE,, as a function of w at K = 0.3 au for the electron density of 
Al. We see that there are steps of about 7~ at w = 0.51 au, the surface plasmon 
frequency at this wavevector, and of about -7r/2 at w = 0.62 au, the frequency of the 
bulk plasmon with wavevector k = (K, 0). These give contributions to SE,, of U,/?,, 

t 

E 
I 

-0.8- 

-1.6- 

Figure 46. Contribution to surface exchange-correlation energy 

w (nu) 

SE,, at K =0.3 au as a function of w, at 
electron density corresponding to A1 (Wikborg and Inglesfield 1975). 

the surface plasmon zero-point energy, and about -wb/4, the zero-point energy of 
half a bulk plasmon removed on making the surface. However, when we carry out 
the integration in (5.16) we obtain the results given in table 3, in excellent agreement 
with SE,, found using the local density approximation for the infinite barrier charge 
density profile (Lang and Sham 1975, Langreth and Perdew 1977). Even though the 
change in plasmon zero-point energy enters the contribution to SE,, at each wavevec- 
tor, the exchange-correlation energy comes from the spatially averaged interaction 

Table 3. Surface exchange-correlation energies in the infinite barrier model. The results 
from the full calculation were obtained by Wikborg and Inglesfield (1975, 1977), and 
using the local density approximation by Lang and Sham (1975) and Langreth and 
Perdew (1977). Energies are in erg cm?. 

I ,  ( a 4  SE,, (full calculation) SE,, (local density approximation) 

2.07 1350 
4 190 
6 60 

1241 
184 

58  
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of an electron with the surrounding electron distribution, and this is reproduced to 
better than 10% by the local density approximation. 

The success of the local density approximation means that it is usually unnecessary 
to go beyond it-a fortunate situation, as the corrections are generally difficult to 
evaluate. The local density expression (2.6) is the first term in a functional expansion 
of E,,, and subsequent terms involve the density gradient (Geldart and Rasolt 1976). 
However, the use of the first gradient correction actually worsens the value of SE,, 
with the density variations found at metal surfaces (Perdew et a1 1977), and it is better 
to stay with the local density approximation. The most promising approach to finding 
the corrections to the local density approximation has come from the work of Langreth 
and Perdew (1977, 1980) who decompose SE,, into three-dimensional wavevector 
contributions, rather than the two-dimensional decomposition we used above (5.16). 
The local density approximation works well at large k, and it is only at small k 
(corresponding to long-wavelength density fluctuations) that corrections need to be 
made. The exact behaviour as k + 0 is dominated by the plasmon zero-point energy, 
and knowing this it is possible to estimate the corrections to the local density approxi- 
mation. 

6. Electronic structure and surface crystallography 

The stable atomic geometry at a surface comes from minimising the total energy-an 
immediate consequence of this is that the equilibrium shape of a crystal depends on 
the variation of surface energy from surface to surface (§ 5) (Somorjai 1976). Here 
we are more concerned with the atomic structure of particular perfect surfaces, and 
the way that changes in electronic structure (§ 3) lead to changes in structure compared 
with the bulk, with surface relaxation and reconstruction. 

6.1. Relaxation of metal surfaces 

LEED experiments suggest that the top interlayer spacing tends to contract in metals, 
especially on open surfaces like FCC (110) and BCC (001) (Van Hove and Tong 1979). 
In the case of FCC A1 the decrease in interlayer spacing is probably 10-15% on the 
(110) surface, with no contraction on the (001) surface (Van Hove and Tong 1979) 
and 2% expansion on the (111) surface (Jona et a1 1980); the (001) surface of BCC 
W shows an 8% contraction (Marsh et a1 1980). This behaviour is contrary to the 
prediction of pair force models, which nearly always give outward relaxations (Johnson 
and White 1976)-the energy of metals cannot generally be written in terms of pair 
potentials, except for the structure-dependent part of the energy of bulk s-p bonded 
metals (Heine and Weaire 1970). 

The tendency for surface contraction has been explained by Finnis and Heine 
(1974) using the Hellman-Feynman theorem, which says that the force on an ion is 
just the electrostatic force from the other ions and the self-consistent electron density 
po(r) .  If the surface atomic cell; were undistorted (figure 42), each ion would be at 
the centre of its own Wigner-Seitz cell, feeling no net electric field from the charge 
in this cell, nor from the other cells because they are nearly spherical: there would 
be no surface relaxation, However, we know that the surface charge tends to be 
smoothed (8  4), and the redistribution of charge produces a force on the surface ions 
in their ideal positions. If we assume that the surface charge is cut off on a plane 
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surface, corresponding to complete smoothing, it is straightforward to find the electro- 
static centre of gravity for the distorted surface cells, at which an ion experiences no 
net field: this corresponds to contractions of 1.6% for FCC ( l l l ) ,  4.6% for FCC (001) 
and 16% for FCC (110), giving at least the right trends. Landman et a1 (1980) have 
used various one-dimensional models of the surface charge density, including the 
Lang-Kohn self-consistent jellium results (9 3.1) to calculate the forces on the ions, 
and obtain similar results to Finnis and Heine, apart from a small expansion (-1"/0) 
on A1 (111). 

The lattice relaxations of A1 have been studied in more detail by Perdew and 
Monnier (1980), using a variational method in which a trial wavefunction satisfying 
a one-dimensional Schrodinger equation is inserted into the full three-dimensional 
Hamiltonian. They vary the position of the first atomic plane and find that the total 
energy is minimised with a 1% expansion on ( l l l ) ,  a 7% contraction on (001) and 
a contraction greater than 10% on (110). 

Charge density smoothing is greatest in s-p bonded metals, like A1 (figure 12), 
where all the valence electrons are nearly free. In the transition and noble metals 
the charge distribution of the tightly-bound d electrons is not smoothed in the same 
way (figures 21 and 29), and we cannot use the argument of Finnis and Heine (1974) 
to describe their contribution to surface relaxation (though the Hellman-Feynman 
theorem can still be used, of course, if we know po(r)  accurately enough). The band 
narrowing in the (001) surface density of states of MO and W (9 3.2.1 and figure 20) 
seems to be responsible for the contractions of 10% (Clarke 1980) and 8% (Marsh 
et a1 1980) found, respectively, at these surfaces. A tight-binding calculation for MO 
(001) shows that the increased interaction of the surface atoms with the substrate on 
the contracted surface transfers weight to the wings of the d-band density of states 
(Desjonqukres 1979), and because the d band is half full this leads to a reduction in 
energy. Figure 47 gives the surface density of states for the ideal and relaxed (12% 
contracted) MO (001) surface, found using the matching Green function method 
(Inglesfield 1 9 7 8 ~ ) :  this also shows an increase in weight in the 'bonding' region of 
the density of states (E  6 0.25 au) together with a downward shift in the central peak. 

401 

0 0 4  010 0 20 0 30 0 LO 
E l au l  

Figure 47. n,(E) for MO (001): A, ideal surface; B, surface layer relaxed inwards by 12% (Inglesfield 1978~). 
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Both of these effects lower the one-electron energy, though the shift in the peak will 
have to  be compensated for by changes in the surface potential in a self-consistent 
calculation. The surface contraction on the BCC (001) surface is thus due to the large 
change in electronic structure on this open surface. It is interesting that W, showing 
a smaller surface contraction than MO, has the greater bulk modulus-in other words, 
the forces resisting contraction are greater in W than MO. 

6.2. MO and W (001) surface reconstructions 

At  about room temperature W (001) goes from-the (1 x 1) structure (relaxed but not 
reconstructed) to the low-temperature ( J 2  x J 2 )  R45' structure (figure 2(a)) in an 
apparently continuous and reversible phase transition (Debe and King 1979); the MO 
(001) surface undergoes a similar phase transition, though the wavevector of recon- 
struction is 0.9(.rr/a, .rr/a) rather than (.rr/a, r / a )  (Felter et a1 1977). The incom- 
mensurability of the MO (001) reconstruction is reminiscent of transition-metal dichal- 
cogenide layer compounds like TaSez, essentially two-dimensional materials which 
show phase transitions from an ideal high-temperature phase to an incommensurate 
phase (Moncton et a1 1977). In some of these cases a Fermi surface instability plays 
a role (Tosatti 1975): the two-dimensional Fermi surface has flattened regions, and 
it becomes energetically favourable for a reconstruction to occur with the (incom- 
mensurate) wavevector wGich spans the Fermi surface, so that an energy gap opens 
up over the flattened regions. This is sometimes called a charge density wave (CDW) 
instability (Chan and Heine 1973), because the flattened regions of Fermi surface 
lead to screening anomalies, with screening charge tending to pile up with the spanning 
wavevector. Calculations for MO and W (001) predicted a flat line of surface states 
at EF in the surface Brillouin zone (Inglesfield 1978c, Krakauer et a1 1979b), and it 
was thus suggested that the surface phase transitions were due to an analogous CDW 

instability (Inglesfield 1978c, Tosatti 1978). However, as we have seen in 8 3.2.2, 
angle-resolved photoemission experiments show a very curved surface-state Fermi 
line (Campuzano et a1 1981), and we must now reject this theory of the phase 
transitions (Inglesfield 1981). 

Rather than surface states at a particular point in the surface Brillouin zone driving 
the transition, more general features of n,(E) are probably responsible for the MO 
and W (001) surface reconstructions. Indeed, on general grounds we would expect 
some sort of instability because EF is close to the central peak in the surface density 
of states (figure 20): any atomic displacements which broaden or split %e peak will 
lower the energy. When the MO (001) surface is reconstructed to a (d2 x 42) R 4 S  
structure (with Q = (.rr/u, r / a )  rather than the observed O.Y(r/a, .rr/a) for simplicity 
of calculation) there are several energetically favourable changes in the surface density 
of states (figure 48) (Inglesfield 1 9 7 8 ~ ) .  We see an increase in n,(E) at low energies, 
weight mainly being transferred to the m = 1 d,, and d,, orbitals associated with bulk 
bonding (8  3.2.11, and a downward shift in the average energy of the central peak: 
these changes are very similar to what we found in surface relaxation, and are due 
to an increased interaction of the surface atoms with their neighbours in the surface 
and substrate. This calculation also shows a kink developing in ns at E F  due to the 
surface-state coupling-this only gives a small contribution to the energy (Inglesfield 
1979b), and is in any case overestimated in this calculation with the spurious straight 
line of surface states at K = ( r / 2 a ,  r / 2 a ) .  An important contribution to the energy 
change in a tight-binding calculation is a broadening of the central peak on reconstruc- 
tion (Terakura et a1 1981). 
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Figure 48. n,(E) for MO (001): A, ideal surface; B, ( J ~ x  42) R45' reconstructed surface with Q = (v /a ,  
v / a )  (figure 2(a ) )  (Inglesfield 1978~) .  

The tendency of the surface atoms to increase their interactions with one another, 
and the substrate, due to the peak in n,(E) (itself a consequence of the open (001) 
BCC surface) leads to other instabilities of the W and MO (001) surfaces under different 
conditions. The adsorption of even a small amount of H causes a reconstruction with 
displacements in the (10) directions (King and Thomas 1980), as the H atoms go into 
bridge sites and enhance this particular instability. These displacements have been 
studied by following the core shifts (van der Veen et a1 1981): the clean W (001) 
surface shows a lineshape which can be decomposed into two core shifts, one com- 
ponent having a core shift of 0.35 eV to less binding energy compared with the bulk, 
and the other a shift of 0.13 eV. These presumably come from surface atoms in 
unreconstructed and reconstructed domains, the displaced atoms having much smaller 
core shifts as their interaction with neighbours is greater, as in the bulk. (The presence 
of domains is probably due to surface defects inhibiting the phase transition (Debe 
and King 1979).) When H is adsorbed the fraction of displaced atoms increases, till 
by 0.2 coverage all the surface atoms are displaced and show the smaller core shift. 
Another instability is produced by adsorption of N on W (OOl), and at 0.4 fractional 
coverage an island structure occurs in which each N atom, occupying a four-fold 
coordinated site, pulls the surrounding W atoms towards itself (Griffiths et a1 1981). 

6.3. Semiconductor surface reconstructions 

The reconstructions on semiconductor surfaces which we discussed in § 3.3 are driven 
by the dangling bonds: in the (2 x 1) reconstructions, doubling the surface unit cell 
lowers the energy of the occupied dangling bonds (figures 33 and 36),  and this stabilises 
the reconstructions (Appelbaum and Hamann 1975, Chadi 1978, 1979a, b). To find 
the actual atomic displacements, the total energy given by (2.3)+ the ion-ion electro- 
static energy must be minimised, and Chadi (1978, 1979b) rewrites this as 

E = 2  2 E ~ + U  (6.1) 
occupied 
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where 

U = E i o n - i o n  - t l  d r l  d r ’ p o ( r ) u ( r - r ’ ) p o ( r ’ ) - ( l d r  Vxc(r)po(r)-Exc). (6.2) 

U is certainly short-ranged, as the first and second terms in (6.2) tend to cancel 
beyond the screening length, and the exchange-correlation energy depends on local 
densities. This term is expanded in terms of atomic displacements, whose coefficients 
are assumed to be transferable from the bulk where they are fitted so that (6.1) gives 
the correct equilibrium volume and elastic constants. The first term in (6.1), the bund 
structure energy, can easily be found from calculations of the electronic structure- 
Chadi (1978,1979b) uses a tight-binding method with fitted parameters. The reduction 
in energy by dimerisation of the dangling bonds, and back bond formation, is contained 
in the band structure term, and this tends to be opposed by strain effects contained 
in U Using this method, atomic displacements have been obtained for the (2 x 1) 
reconstructions of Si (111) and (OOl), and relaxations of GaAs and ZnSe (110) (Chadi 
1978, 1979a, b) which are generally in very good agreement with experiment. 

By analogy with the (2 x 1) reconstruction of Si (1 11) we can understand the local 
buckling suggested for the (7 x 7) reconstruction (figure 33) (8 3.3, Chadi et a1 1980, 
McRae and Caldwell 1981); the question remains-why should the (7 X 7) structure 
be superimposed on the local buckling? Tosatti and Anderson (1974) suggested that 
the new surface Brillouin zone boundaries introduced by the (7 x 7) reconstruction 
would nicely enclose the dangling bond Fermi line, and this would make the energy 
gap at the zone boundaries especially effective in lowering the energy of the occupied 
surface states. This might still have a marginal effect even when the local buckling 
itself lowers the energy of the states, but it really seems inappropriate to consider the 
shape of the Fermi line of the ideal surface when the reconstruction probably involves 
quite large displacements. What seems conclusive evidence against the influence of 
the Fermi line is the stability of the (7 x 7) geometry to hydrogenation, which removes 
both the dangling bond surface states and the buckling (McRae and Caldwell 1981). 
A possible answer is that the change in electronic structure in the top layer of atoms 
means that they have a different effective lattice constant from the substrate, and 
misfit strain energy determines the optimum size and separation of islands of excess 
atoms on the surface (Phillips 1980). 
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