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A very simple procedure to extract pseudopotentials from ab initio atomic calculations
is presented. The pseudopotentials yield exact eigenvalues and nodeless eigenfunctions
which agree with atoxnic wave functions beyond a chosen radius x,. Moreover, logarith-
mic derivatives of real and pseudo wave functions and their first energy derivatives
agree for r &r, guaranteeing excellent transferability of the pseudopotentials.

Pseudopotentials were originally introduced to
simplify electronic structure calculations by
eliminating the need to include atomic core states
and the strong potentials responsible for binding
them. ' Two roughly distinct lines of recent de-
velopment are discernable: In one, ion pseudo-
potentials of enforced smoothness were empir-
ically fitted to reproduce experimental energy
bands. ' Consequently, wave functions were only
approximately described. In the other, the ortho-
gonalized-plane-wave (OPW) concept underlying
the pseudopotential method was used to derive
"first principles" pseudopotentials from atomic
calculations. ' These latter potentials are gen-
erally "hard core" in character, that is, strongly
repulsive at the origin. The resulting wave func-
tions generally exhibit the correct shape outside
the core region; however, they differ from the
real wave functions by a normalization factor. '
It is the purpose of this Letter to demonstrate
that the normalization and hard-core problems
can be solved simultaneously, while also max-
imizing the range of systems in which a pseudo-
potential gives accurate results.

The new family of energy-independent pseudo-
potentials introduced here have the following de-
sirable properties:

(1) Real and pseudo valence eigenvalues agree
for a chosen "prototype" atomic configuration.

(2) Real and pseudo atomic wave functions agree
beyond a chosen "core radius" r, .

(3) The integrals from 0 to r of the real and
pseudo charge densities agree for r &r, for each
valence state (norm conservation).

(4) The logarithmic derivatives of the real and
pseudo wave function and their first energy deriv
atives agree for r &r,.

Properties (3) and (4) are crucial for the pseudo-
potential to have optimum transferability among
a variety of chemical environments in self-con-
sistent calculations in which the pseudo charge
density is treated as a real physical object. '
This approach starids in contrast to earlier OPW-

like approaches" ' in which the normalized
pseudo wave functions have to be orthogonalized
to core states and renormalized in order to yield
accurate charge densities outside the core re-
gion. ' Property (3) guarantees, through Gauss's
theorem, that the electrostatic potential produced
outside r, is identical for real and pseudo charge
distributions. Property (4) guarantees that the
scattering properties of the real ion cores are
reproduced Mlitk rnininzum error as bonding or
banding shifts eigenenergies away from the atom-
ic levels. A central point of our approach is
that these two aspects of transferability are re-
lated by a simple identity. The method permits
the potentials to be intrinsically "soft core" with
a continuous range of compromise between po-
tential strength and the "core radius" r, . Soft-
core potentials are advantageous in band-struc-
ture calculations employing any kind of Fourier
analysis.

The derivation of the identity relating proper-
ties (3) and (4) is closely analogous to that of the
Friedel sum rule and an identity discussed by
Shaw and Harrison' in connection with OP%-like
pseudopotentials. We find (in atomic units)

To derive a convenient family of pseudopoten-
tials with properties (1-4), we first carry out
an ab initio self-consistent full-core atom calcu-
lation via a Herman-Skillman-like program, '
with use of a local approximation for the exchange
and correlation potential. We retain both the po-
tential V(r) and also u, (r), defined as r times the
valence wave function. We choose an analytic
cutoff function f(x) which approaches 0 as x -~,
approaches 1 at least as fast as x' as x-0, and
cuts off for x-1. For each L, we choose a cutoff
radius r„, typically 0.5 to 1.0 times the radiusr, of the outermost peak of u, . We then form the
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potential

V,P'(r) = [1-f(r/r„)] V(~)+ c,f(r/r„), (2)
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which converges to V(r) for r &x„, and adjust the
constant c, so that the nodeless solution u» of
the radial Schrodinger equation with V»~' has
energy c» equal to the original eigenvalue &,.

It is clear that property (1) is now satisfied,
and that the normalized function se„satisfies
property (2) within a multipbcative constant,

p( &~ ) (t') = Q ((t)~'

since both satisfy the same differential equation
and homogeneous boundary condition for r &x,.

To satisfy (2)-(4), we now modify the interme-
diate pseudo wave function ~„ to

(4)

where g, (x) cuts off to zero for x &1, and behaves
as x'" at small x. The chosen asymptotic be-
havior of f(x) and g(x) guarantees the potential to
be finite at the origin. ~, is the smaller solution
of the quadratic equation resulting from the con-
dition that I„be normalized,
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The final pseudopotential V„I"producing the node-
less eigenfunction ze» at eigenvalue &, is now

found by inverting the radial Schrodinger equa-
tion.

To form the final bare-ion pseudopotential, the
valence pseudo charge density is found with use
of the m» wave functions in the same configura-
tion as the original atom calculation. The Cou-
lomb and exchange-correlation potentials due to
this density are then calculated and subtracted
from each V»P'. Analytical expressions contain-
ing few parameters can subsequently be fitted to
the numerical potential functions. '

The choice of cutoff functions

f(x) = exp(- x~),

g, (x) =x"' exp(- x'),

has provided excellent results in tests on a vari-
ety of atoms. Use of the method is illustrated in
Fig. 1, in which s, P, and d real and pseudo
wave functions are compared for Mo in the config-
uration' 4d"'5s' 5p'". It is clear that each pair
of functions converges rapidly for r &~„. The
corresponding bare-ion pseudopotential in Fig. 1
is clearly "soft core." It is weak and nearly
identical for s and p, but has a strong attractive
d well, similar to earlier published pseudopo-
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F'iG. l. comparison of pseudo wave functions (solid
lines) and ab initio full-core atomic valence wave func-
tions (broken lines) for Mo. The lower panel shows the
corresponding bare-ion pseudopotentials.

tentials for the 4d transition series. "
Property (4) is illustrated for the Mo atomic

pseudopotentials in Fig. 2. The logarithmic de-
rivatives of the real and pseudo wave functions,
regular at the origin, are compared at r = 3 a.u.
for a ~1-a.u. energy range straddling the atomic
eigenvalues. For l =2, the agreement is so good
over the entire range that the curves are indis-
tinguishable. For l =1, the approach to a core
state at —1.38 a.u. produces deviations towards
the low-energy end of the range. For positive
energies the real and pseudo scattering phase
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shifts must differ as a consequence of Levinson's
theorem, "and the energy scale here is apparent-
ly also set by the core binding energies. Band-
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FIG. 2. Energy dependence of logarithmic derivatives
at &=3.0 a.u. for Mo ab initio full-core atomic wave
functions (broken lines) and pseudo wave functions {sol-
id lines) as shown in Fig. 1.

structure methods such as augmented plane wave
and Korringa-Kohn-Rostoker depend on the lat-
tice potential solely through the logarithmic de-
rivatives at the muffin-tin radius, so that plots
such as Fig. 2 give a direct measure of the range
over which the pseudopotential mill yield accu-
rate bands. Explicit results of band-structure
calculations employing these new pseudopoten-
tials will be presented elsewhere. ' Tests for
bulk Si indicate that real" and pseudo charge
densities (with r, =0 75r. ) agree to better than
& 1o, excluding spheres of radius 1.5 a.u. about
each atom. Corresponding band-structure ener-
gies agree to better than 0.05 eV over a 20-eV
range.

Another test of transferability involving both
properties (3) and (4) is given by comparing self-
consistent excited configurations of real and
pseudo atoms. Such comparisons are shown in
Table I for excited, singly and doubly ionized
configurations of Mo, Si, and O. The ion-core
pseudopotential is that of the ground-state con-
figuration' for which agreement is exact by con-
struction. The excellent agreement of the eigen-
values (i.e. , deviations smaller than O.l eV over
a 30-eV energy range) clearly illustrates the ef-
fectiveness of the properties built into these
pseudopotentials over a wide region of the per-
iodic table. It should be noted that nodeless wave
functions such as the 0 2P have been constructed
by the same procedure, yielding a strongly at-
tractive but nonsingular ion pseudopotential.
The pseudopotentials introduced here permit ac-
curate self-consistent calculations, and have
the flexibility of a "quality" parameter r, which
can be chosen appropriately for the intended ap-
plication. The procedure to produce them is ex-
ceedingly simple and can be added in the form

TABLE I. Atomic eigenvalues in atomic units for pseudopotentials constructed
with r

~&
= 0.75& &. D denotes the deviations from the corresponding full-core ab

initio results. The signer exchange approximation is used.

Configuration
Energy

p

0 2s'2p'
0 2s22ps

Q 2s 2p
Si 3s 3p
Si 3s'3p'
Si 3s'3p'
Mo 4d 5s 5p
Mo 4d55s
Mo 4d 5s

—0.8818
—1.4337
—2.1181
—0.4261
—0.6981
—1.0455
—0.2108
—0.3599
—0.6421

-0.3490
—0.8945
—1.5778
-0.1767
—0.4321
—0.7561
-0.0865
—0.2243
—0.4675

—0.2740
—0.3936-0.7780

—0.0011
0.0005

—0.0001
—0.0018

0.0007
0.0031

m p

mp
—0.0013

-0.0003
—0.0005
-0.0037

0.0001
0.0004
0.0025

—0.0006
0.0005

-0.0022

0.0025
—0.0016
—0.0006
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of a simple subroutine to any existing local-den-
sity atom program.

We have profited from many helpful discussions
with G. &. Baraff and V. Heine. One of ns (C.C.)
is a Bell Laboratories Summer Research Asso-
ciate.
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