PHY 752 Solid State Physics
11-11:50 AM MWF Olin 107

Plan for Lecture 28:

» Chap. 21 in Marder & pdf file from
Bassani’s text
» Optical properties of solids
> Interband transitions
> Excitons
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Treatment of electromagnetic fields in solids

Zero order Hamiltonian for electron
pZ
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Hamiltonian in the presence of an electromagnetic field
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Treatment of electromagnetic fields in solids
First order perturbation

Hy==5—(A-p+p-A)+ep
2mc

Possibility #1:

A= m[ﬁf“) and $=0
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Possibility #2:

A=0 and ¢=R(r-Ee™)
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Treatment of electromagnetic fields in solids
using possibility #1 and following Bassani’s text

Fermi Golden Rule:
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Treatment of electromagnetic fields in solids
using possibility #1 and following Bassani’s text

Conduction band

k

FI0. 5-1. Schematic representation in an energy band diagram of
vertical transitions produced by a radiation field.
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Treatment of electromagnetic fields in solids
using possibility #1 and following Bassani’s text
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Normalizing the result in terms of imaginary part of dielectric
constant:
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Treatment of electromagnetic fields in solids
using possibility #1 and following Bassani’s text
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Treatment of electromagnetic fields in solids
using possibility #1 and following Bassani’s text
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Sometimes can use
group theory to

determine “forbidden”

transitions
When matrix elements are constant; structure depends
sensitively on joint density of states
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PHYSICAL REVIEW VOLUME 134, NUMBER $A 1 JUNE

Electronic Spectra of Crystalline Germanium and Silicon*f

Davin Brust}
Argonne National Laboratory, Argowne, Tiinois
(Received 9 December 1963)

A detailed calculation of the energy bands of germanium and silicon has been performed by use of the
pscudopotential method. The first three potential coelicients have been determined empirically, and all
higher ones set equal to zero. This potential was used to compute the energy eigenvalues at ~50 000 points
throughout the Brillouin zone. By use of this sample, we calculated the imaginary part of the dielectric
constant in the optical and near ultraviolet where direct transitions between the valence and low-lying
conduction bands dominate the response. Photoelectric yield curves were obtained for comparison with re-
cent experiments. Tn all cases agreement of theory and experiment was reasonable. Energy contours were
constructed in several of the principal symmetry plancs. These were used to explain the structure in the
optical propertics of Ge and Si in terms of transitions near certain important critical points. Effective
masses and the static diclectric constant were also computed.
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Band structure of Si (as calculated by Brust)

e Tr—my [T ST

Fic. 6. Pseudopotential energy bands along 4, A, and = sym-
metry directions. Some of the principal transitions have been
marked.
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Integration region of Brillouin zone
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Experiment

- Calculation
with matrix
elements
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First principles calculation

PHYSICAL REVIEW B VOLUME 62, NUMBER § 15 AUGUST 2000-11

Electron-hole excitations and optical spectra from first principles

Michael Rohifing
Institut fiir Theoretische Physik II ~ Festkorperphysik, Universitat Minster, Wilkelm-Kiemm-Sirafie 10, 48149 Miinster, Germany

Steven G. Louie
Department of Physics, University of California, Berkeley, California 94720-7300
and Marerials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
(Received 13 April 2000)
We present a recently developed approach to calculate electron-hole excitations and the optical spectra of
condensed matter from first principles. The key concept is to describe the excitations of the electronic system
by the corresponding one- and two-particle Green's function. The method combines three computational

the electronic ground state i treated within density-functional theory. See
I

biained within the GV appr

i the coupled electron-hole exc

This holds both for bound e ell as for the resonant spe

ation of the method
of spatially isolated
Is (semiconductors and

to real systems. To illustrate the approach, we discuss the excitations and optical sp

systems (atoms. molecules, and semiconductor clusters) and of extended, periodic ery
insulators)
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Exciton effects
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Exciton effects  (using Marder’s materials)

Wannier approximation
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Self-trapped excitons (RT Williams)
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NaCl
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