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CHAPTER 5

INTERBAND TRANSITIONS AND OPTICAL
PROPERTIES

IN THIS chapter we wish to study the relationship between the electronic band structure
and the optical properties in crystals. We shall confine ourselves here to the case of
interband transitions. Emphasis will be given to the discussion of that part of the struc-
ture in the optical constants which may be understood on the basis of the symmetry
properties of the crystal. We shall also discuss in detail a couple of particularly effective
examples. A review of the experimental situation up to 1968 for the case of semicon-
ductors can be found in the book by Greenaway and Harbeke.!!? In the last few years
new optical measurements have been accumulated for all types of solids and have been
interpreted on the basis of the quantum theory of band-to-band transitions. The effect
of exciton interaction on the optical spectrum will be discussed in the following chapter.

5-1 General theoretical analysis of band-to-band optical transitions!??

S-1a Basic approximations

The effect of a radiation field on the crystal electronic states can be studied using
standard quantum mechanical methods. From standard classical mechanics we know
that the kinetic energy of a system of N electrons

- N 2
PP
1=1 2m

has to be replaced, in the presence of an electromagnetic field, by the expression

i [2L (Pt + CAR, 1) )2]’
1=1| 2m c

where e is the absolute value of the electron charge, A is the vector potential of the electro-
magnetic field, and the scalar potential ¥ has been taken as zero without loss of generality
because of the arbitrariness in the gauge. The Lorentz condition and the choice V = 0
imply V. A = 0. Furthermore we can now neglect non-linear effects by disregarding
the term in A2. We then find that the interaction Hamiltonian of electrons in a radiation
field is given by the expression

e N
Hyp = — Z A, t)-py. (5-1)
mec i=1
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ELECTRONIC STATES AND OPTICAL TRANSITIONS

The effect of a radiation field on the crystal states can be studied by treating H,; as
a time dependent perturbation term on the electronic states of the crystal described
in the previous chapters. This time dependent term will cause electrons to make tran-
sitions between occupied bands and empty bands. From the transition probability
rate, the relationship between the electronic structure and the phenomenological optical
constants can be derived.

We suppose that the electronic states are those computed in the adiabatic scheme
and using the one-electron approximation (Section 3-1). Furthermore we make use
of Koopmans’ approximation (Appendix 5B), thus neglecting electron polarization
effects. The above basic approximations must be taken as a starting point only in
studying the optical properties of some crystals, and improvements leading to indirect
transitions and exciton effects will be discussed in Section 5-4 and in Chapter 6.

5-1b Quantum theory of band-to-band transitions

From elementary quantum mechanics we know that, to first order perturbation
theory, the probability per unit time that a perturbation of the form LeT!** (where
the time dependence is completely contained in eT**) induces a transition from the
initial state |i) of energy E; to the final state [f) of energy E, is

Py = —‘;1 | <12 liy\? O(E; — E, F ho). (52)

The above relation has the interpretation that a perturbation Ze~'** induces transitions
with absorption of a quantum fiw, while a perturbation Ze'®* gives rise to emission
of a quantum #iw. Since the perturbation must be real we have the sum of both absorp-
tion and emission terms, but the choice of initial and final states in (5-2) selects out
the term to be considered. If the initial state is the ground state, the emission term makes
expression (5-2) vanish. Thus only the absorption term needs to be considered in dis-
cussing the optical excitation spectrum of a crystal in the ground state. The emission
term in (5-2) is relevant in discussing the radiative emission due to electrons initially
in excited states (luminescence, phosphorescence, and pair recombination at impurity
centres). We will neglect the emission term in the present treatment, keeping in mind
that it could be dealt with, when needed, just by putting the appropriate sign into
the argument of the é function.
To second order, the transition probability rate is

AR A PXCIEA DY - )
Piwy = h; AT &E, — E, F ho F ho), (5-3)

where |f) indicates all intermediate states including initial and final state, The matrix
elements appearing in (5-3) can be regarded as a result of two successive processes—
firstly, the system makes a transition from the state |[i) to the state |#), and, secondly,
from |8) to|f). Energy is not conserved in the intermediate transition; it is only con-
served between initial and final states. Also in this case the considerations made before
about absorption and emission processes apply.

In a similar way we can extend the computation of the transition probability rate
to higher order as an obvious generalization of (5-2) and (5-3). We must keep in mind
that the argument of the 8 function is E, — E; F fiw --- F fiw, where the number of
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INTERBAND TRANSITIONS AND OPTICAL PROPERTIES

quanta absorbed or emitted gives the order of the transition, and the matrix elements
connecting the initial and the final state through different intermediate states are divided
by energy differences which include an appropriate number of quanta fiw. To third
order we obtain, for example,

2n L)AL IBYBILNY |25 _ .
b % B B o T ) B — BT hay| o BT R Fhe TR

We will be mostly interested in first order transitions of type (5-2), but will also discuss
effects due to higher order terms in Sections 5-3 and 5-4.

The interaction of a radiation field with the electronic states of a crystal may induce
both interband and intraband transitions. In semiconductors (and insulators) the ground
state of the whole crystal at zero absolute temperature, contains completely occupied
or completely empty bands, and as a consequence only interband transitions need be
considered. For semiconductors at finite temperatures and also for metals there is also
a free carrier absorption for long wavelength radiation (in general, in the infrared
region), but we will not consider the optical absorption by free carriers here although
it is worth while to point out that its theory is quite similar to that of interband tran-
sitions. :

We now calculate the contribution to the optical constants due to a couple of valence
and conductions bands. For simplicity we make the further assumption of neglecting
relativistic effects, an approximation which could easily be removed if required. The
ground state of the electronic system can be written (in the adiabatic and one-electron
approximation) as a Slater determinant

o = o {ur,(r1) 6(1) Yo, 2) B2) .. Yorcys,(n) - Poren(T20) B2N)},

where &/ is the antisymmetrizing operator, N is the number of unit cells, v refers to
a specific valence band, « and § are the spin eigenfunctions, and s, is a spin index indic-
ating either « or f. A trial excited state, in which the conduction wave function y,,,,,
replaces the valence wave function y, ,, can be written as

¥’ = st {ur, (1) (1) Poi,,(2) B(2) .. Yergs,(Fa) - Yorn(¥2n) B2N)} .

We need the matrix elements of the operator H g [defined in (5-1)] between the ground
state and the excited states. Since H,.z is a sum of one-particle operators, the non-
vanishing matrix elements connect the ground state ¥, with states ¥’ having only one
electron which is excited. This is shown explicitly in Appendix 5A; from formula (5A-3)
we can write

-y =

, e
<T |‘HBR IT°> = E <'/’ck!s,| A ° P I'pvk,s,)

e
= me 6s,,s,<wck,l A.p W’vk;) .

For radiation of a given frequency w the vector potential A can be written as
A(r, 1) = Age '™ 79 4 cc., (5-4)

where e is the polarization vector in the direction of the electric field, n is the wave
vector of the radiation, and c.c. indicates the complex conjugate of the previous term.
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We shall only consider the effect of the first term in (5-4) which gives rise to the ab-
sorption.
The transition probability per unit time (5-2) now Pecomes

2 [ edy \?
g'ki'i"ckﬁ: = "h_( mco) 5:,,.1, I('Pck,l e Te. P W’ok.)Iz &E; — E, — hw), (5-5)

which is the basic expression for computing optical constants in the frequency region
of interband transitions.
Let us now consider the matrix element

el e e P Yo (5-6)

The function y,,, belongs to the irreducible representation of the translation group
with vector k,. The function yp,,,, as well as its derivative e « p y,;,, belongs to the ir-
reducible representation with vector k,, and ¢'? ' * belongs to the irreducible represen-
tation of vector . Since the product of the irreducible representation k, by the irreducible
representation n is the irreducible representation k; + #, selection rules of the type
discussed in Section 2-4b result. Thus the matrix element (5-6) is zero unless

kf = kl + N+ h’ (5'7)

h being any reciprocal lattice vector. The above equation expresses the conservation
of momentum in a periodic medium. We observe that for typical photon energies
of the order of an electron volt, the wavelength is of the order of 10* A and

In| ~ 27/10* A-1.

The range of variation of k; (and k) is 2z/a with a of the order of a few angstroms.
The wave functions and energies in a given band are functions which depend slowly
on k (compared with variations of the order of n), and so for all practical purposes
we can neglect the radiation propagation vector » in eq. (5-6). Furthermore, since k,
and k, are confined to the first Brillouin zone, we may write

k, ~ k. (5-8)

We thus arrive at the result that only “vertical” transitions can be induced in an energy
band diagram by the radiation field (Fig. 5-1). Equation (5-7) expresses the conservation
of momentum in crystals and (5-8) is the dipole approximation. We can therefore
simplify the expression for the probability per unit time given in (5-5) as

Poprmcts = 2 ( :‘c" ) e+ Mo JEM) — E&) — ho),  (5-92)

where
e+ M, (k) = {pol e plyn>

=e- [ k1) (—ihV) p,(k, 1) dr. (5-9b)

crystal
volume

To obtain the number of transitions W(w) per unit time per unit volume induced
by light of frequency w, we must sum (5-9a) over all possible states in the unit volume,
i.e. we must sum over k, the spin variable s, a_nd over the band indices v (occupied)
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FIG. 5-1. Schematic representation in an energy band diagram of
vertical transitions produced by a radiation field.

and ¢ (empty). Since the allowed k vectors are distributed in the Brillouin zone with
a density V/(27)® (V being the crystal volume),

, .
W) = 2 (o 20K o M @) (EX) — EK) - ),  (5-10)
h mc v, ¢ (2.7[)3
BZ
where the integral extends over the first Brillouin zone and the factor of 2 arises from

the integration of spin variables.

5-1¢ Connection with the optical constants'*=31

We wish now to derive the relation between expression (5-10) and the optical constants
which are used phenomenologically to describe the optical properties of matter. Optical
properties can be described in terms of the complex dielectric function ¢ = g; + ie,
or the complex refraction index N = n + ik, where n is the ordinary refraction index
and k is known as the extinction coefficient. The optical constants € and N are connected
by the relation ¢ = N2, and the absorption coefficient « depends on the above optical
constants via

_ 2kw

" , (5-11)
c

a="2¢,. (5-12)
nc

The average energy density # in a medium of a radiation field described by the vector
potential (5-4) is related to the optical constants through the relation

_ nAjw?

 2ne?

It is also known that the radiation in the medium propagates with velocity c¢/n. Using
(5-10) we can now obtain microscopic expressions for the absorption coefficient and
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the other optical constants. The absorption coefficient is by definition the energy ab-
sorbed in the unit time in the unit volume divided by the energy flux

ho WA (w)
w) = u(c/n)

where fiw W(w) is the energy absorbed per unit volume and time, and the product u(c/n)
of the energy density by the velocity of propagation in the medium is the energy flux.
We thus obtain for the absorption coefficient

w(w) = 2 5 [ 20K | o MW SEK) — EK) — ). (5-13)
nem?w oc | (27)3
Using (5-12) Bz
_4n%e® o [2dk 2 _ _ ]
cx0) = 2 %, | 2l MF Q) — B ~ o). (514
BZ

This is the basic expression which connects the band structure with the optical properties;
it is preferred over related expressions for other optical constants because it does not
depend on the refractive index.

The quantum expression for &,(w) can be obtained using the dispersion relation of
Kramers-Kronigt?? oo

81((0) =1+ —z—Pj CD'Sz(w’)’z;zdw’, (5-15)
T w*—w
]

where P indicates the principal part. By direct substitution of (5-14) into (5-15),
2dk le « M, (k)|? 1
(271)3 [E.k) — EK))/% [E(k) — E&)P/H — o
(5-16)

Therelations (5-14) and (5 16) allowin principale the computation of all optical constants
once the band structure is known.

The optical constants satisfy some general relations which are often used to test
the consistency of the approximations involved in their computation.!3:4) A very useful
relation is the sum rule .

f wea(w) do = —;iwf,, (5-17a)

o

o) =1 + 8ne Z

where the plasma frequency w, is given by
4nne® )1/ 2

m

and n denotes the density of the electrons which take part in the transition. Another
useful sum rule is obtained as a particular case of the dispersion relation (5-15), taking
the limit w — 0.

W, =

(5-17b)

£,(0) = 1 + -2-'[ 2®) 4. (5-18)
4 w
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Two particularly important sum rules on the index of refraction for isotropic media
are

f [n(w) — 11dw =0 (5-19)

and

I wk(w) dw = %wi. (5-20)

0

5-2 Structure of the optical constants at critical points

5-2a Theoretical discussion

The standard procedure for obtaining theoretically the optical constants of a crystal
is to evaluate expression (5-14) for the imaginary part of the dielectric function. We
shall now discuss in some detail specific cases and will show that a structure in the optical
constants results with peaks at critical points.

The matrix elements |e - M, (k)|? between a given couple of valence and conduction
bands are shown to be (see Section 3-9) smooth functions of k, except near special k
vectors where e+ M, (k) vanishes because of symmetry. Neglecting such a situation
and taking e« M, (k) as a constant, we find from eq. (5-14) that the contribution to
the dielectric function from a pair of bands is proportional to 1/w? and to the quantity

2dk
Jollir) = f G LB — E.0) — (5-21)
BZ

which is called joint density of states because it gives the density of pair of states—one
occupied and the other empty—separated by an energy #iw.

The integration in (5-21) can be performed by using the properties of the 8 function.
We know that

f 8 3L/)] i = T g0

B ) (5-22)

X=X0

df

dx

in which x, represents a zero of the function f(x) contained in the interval (a, b). In
three dimensions

JlB) = == f N (5-23)
(27) IVi[E(k) — E(K)]|
E.(k)—E,()=E
where dS represents an element of surface in k space on the surface defined by the
equation

E (k) — E,(k) = E.

The joint density of states for interband transitions as a function of E shows strong
variations in the neighbourhood of particular values of E which are called critical point
energies. From eq. (5-23) we see that singularities in the joint density of states are
expected when

ViEK) = VE&) =0, (5-242)
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or more generally when
ViE (k) — V,E(k) = 0. (5-24b)

Critical points of type (5-24a) occur in general at high symmetry points of the Brillouin
zone, while critical points of type (5-24b) may occur at any k vector. The number
of critical points which may occur in the Brillouin zone has been discussed by Phillips,ts?
and the types of singularity have been analysed by Van Hove.%)

The analytic behaviour of J,.(E) near a singularity may be found by expanding
E (k) — E (k) in a Taylor series about the critical point. In the expansion, linear terms
do not occur because of conditions (5-24). Limiting the expansion to quadratic terms
and denoting the wave vectors along the principal axes with the origin at the critical
point by k., k,, k.,

(5-25)

2 2 2 2
E (k) — E,(k) = E, + "—(e,k—* + e,k—’ L )
2 m, m, m,

with m,, m,, m, positive quantities and ¢,, ¢,, &, equal to +1 or —1. We obtain four
types of singularities, depending on the signs of ¢,, ¢,, &;. The critical points are called:
M, when all coefficients of the quadratic expansion are positive (minimum);
M, when two coefficients are positive and one negative (saddle point);
M, when two coefficients are negative and one positive (saddle point);
M, when all coefficients are negative (maximum),

where the subscripts attached to M indicate the number of negative coefficients in the
expansion of the energy differences.

The analytic behaviour of the joint density of states near critical points can be ob-
tained using (5-21) and (5-25). We report the results in Table 5-1, and we notice that
there are sharp discontinuities at the critical points.

Proof. As an illustration of the results reported in Table 5-1, let us consider the case
of the point M,.
In the expansion (5-25) we have ¢, = ¢, = 1 and &; = —1, and substituting in (5-21)

2 2 2 2 2 2
T.(E) = |29k 0(E0+ Wk B fv__ﬁ_fz__E),

J @y 2 m 2 m 2 m,
We introduce the new coordinates
Q= '(—zm—':l),—/'{ki(i =X, ), 2)
and obtain
J(E) = (;)3 23'2"”";;’"”””2 f dq§Ey + % + 42— ¢ — E).

Using cylindrical coordinates ¢, ¢ in the (g,, 9,) plane, we transform the above equation
into

_ 2 23/2(mxm’m‘)1/2 2 _ 42 -
) = o 2 2”“ qdq dg,8(a* — a2 + Eo — E).
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TABLE 5-1. Analytic behaviour and schematic representation of the joint density of states near critical
points for the three-dimensional case. For convenience A = 72"2h~3(m,m,m.;)'/*> and B indicates
a constant which depends on the detailed band structure

Critical Joint density of states Schematic
Point representation
J(E)
M, B+ O(E—Ey) when E < E, M,
e J(E)=
Minimum B+ A(E— Eo)!/2+ O(E— E,) whenE > E, —
J(E)
M, B— A(Ey— E)'/* - O(E— E,) when E< E, M
Saddle J(E)=
point B+ O(E— Ey) when E > E, !
—
J(E)
M, B+ O(E— Ey) when E < E, M
Saddle J(E)= 2
Point B— A(E— Eg)/*+4 O(E— E,;) when E > E, {\
El E
J(E)
B+ A(Ey— E)*/? + O(E— Ey) when E< E, M3
M\ yey= \
Maximum B+ O(E— Eyp) when E > E, .
£
Eo
Using (5-22) we can integrate with respect to ¢, and obtain
R
2 2**(momm)'? . 1
Jeo(E) = 2 qdq , (5-26)
” (2m)? " f Z 24,

with

4% = F/(¢* + Eo —E) if ¢>+ E, — E>O0.
The above integration has been extended to a region surrounding the critical point;
for convenience we have used a sphere of radius R in which the expansion holds. With

the help of the step function
1 for x>0,

0 for x<O,

n(x) = l
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eq. (5-26) can be written as

R

J(E) = AJJ(q, —- (e + Ey = E)
—

0

where 4 = n272h~3(mm,m,)*/2.
If

E<E,, n(¢*+E,—E)="1,
R

J.(E) = 4 944 = A(J(Ey — E + R?) — J(E, — E
() @ +Eo - E) (Ve R =V )

= —A./(E, — E) + O(E, — E), (5-27a)

where the last step is possible for an energy value E sufficiently near to the critical
point energy E, so that |E — E,| < R2. The expression O(E, — E) indicates a quan-
tity that vanishes at least linearly when E — E,.

If E> E,, then 9(q> + E, — E) = 1 only if ¢ > \/(E — E,). Thus

R

d
o(E) = 1 — AJ(E,—E+ R? = O(E, — E). (5
JoE) = 4 TTLE"H J(Eo — E + R?) = O(E, — E). (5-27b)

V(E—Eo)

Expressions (5-27a) and (5-27b) represent the contribution to the joint density of
states from a region surrounding the critical point. The contribution to J.,(E) from the
remaining region of the Brillouin zone is a continuous quantity (provided that the other
critical points are dealt with separately) which is taken into account by the smoothly
energy dependent expression O(E — E,) of Table 5-1.

To complete our discussion of the joint density of states let us consider critical points
in two-dimensional and one-dimensional structures. For crystals, in which the energy
depends only on two components of k, say k, and k,, the expression (5-21) for the joint
density of states becomes

27 2
va(E) = - 3
c 27)

BZ

dk, dk,8(ELk,, ky) — Ey(ky, k,) — E), (5-28)

where 2n/c appears because of the k, integration, and BZ now indicates the two-dimen-
sional Brillouin zone. Near a critical point, we can expand E.(k,, k,) — E/(k,, k,)
in the form

2 2 2
E(ky, ky) — E (ks, ky) = E, + h—(sxﬁ + & ﬁ)
2 my m,

We have in this case three types of critical points which we denote by P,, P, P,
with subscripts indicating the number of coefficients which are negative. The method
of calculation of the joint density of states is the same as that explained for the three-
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dimensional case. At the points P, and P, a step function singularity occurs, while
at the saddle point P, we have a logarithmic singularity. The results are given in Table 5-2.
For crystals, in which the energy depends only on one component of k, say k., the
expression (5-21) for the joint density of states becomes
4n? 2
——-dk,0(EL(k;) — E(k.) — E),
5 | G e (ELkD — Exs) - )
BZ

Jco(E) =

where 4n2/ab appears because of the k., k, integrations, and BZ now indicates the one-
dimensional Brillouin zone. Two different critical points are obtained that we denote
by Qo and Q, . The expression for the joint density of states can be immediately obtained
using (5-22) and is given in Table 5-3.

We should like to point out at this juncture that changing the dimension of the
k vector has a profound effect on the nature of the singularities at the critical point.
In the three-dimensional case we have basically shoulders and beak points, as can be
seen from Table 5-1, while in the two-dimensional case we have a logarithmic singularity
for a saddle point, and in the one-dimensional case we have sharp singularities of the
type (E — E,)~'/2.

The results obtained from the theory of direct transitions can be compared with
experimental results. For theoretical reasons (electron—electron, electron-lattice inter-
action, presence of imperfections) the singularities in the joint density of states are
expected to be smoothed out in practice and to appear as peaks in the optical constants
observed experimentally. We also expect the peaks in the two-dimensional case for the

TABLE 5-2. Analytic behaviour and schematic representation of the joint density of states near critical
points for the two-dimensional case. For convenience 4 = (87/c) h~*(m,m,)'/?,and B indicates a constant
which depends on the detailed band structure

Critf'cal Joint density of states Schemati.c
Point ) representation
J(E)
B+ O(E—E,) when E < E, -
Py
Minimum | 7®)=
B+ A+ O(E—E,) when E > F, —
~ . L———‘ E
EO
J(E)
n P
Py A E |
Saddle J(E) = B——Inll —_—— +0(E—E9) : '
point o Eo :
]
]
E o E
J(E)
P B+ A+ O(E— Ey) when E < E, —/ P2
2
Maximum J(B)=
B4-O(E— Ey) when E > E, S
T2
Eo
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TABLE 5-3. Analytic behavior and schematic representation of the joint density of states near critical
points for the one-dimensional case. For convenience 4 = (47/ab) h~'m!/2, and B indicates a constant
which depends on the detailed band structure

Critical Joint density of states | Schematic
Point representation
J(E)
B+ O(E— Ey) when E < E, Q.
Qo _
Minimum J(E)=
" B+ A(E— Eo)~"'?+ O(E— Eo) when E > E,
¢
J(E)
B+ A(Ey— E)~'?4 O(E— E,) when E < E, Q
Qs _
Maximum JE)=
B+ O(E— Ey) when E > E,
——4———é E
o

saddle point to be more easily detected than those in the three-dimensional case be-
cause of the sharpness of the logarithmic singularity. In the one-dimensional case
they can be detected even better, as we will see in Chapter 8 in discussing the Landau
levels.

We have so far considered the case of allowed transitions for which the structure
in the dielectric function is basically determined by the joint density of states. The case
of forbidden transitions is of no interest for M, , M, , or M, singularities because allowed
transitions of equal energy occur in other regions of the Brillouin zone. In case
the transition is forbidden at the edge the matrix element (5-9b) is proportional to
(k — k,), and this dependence must be taken into account in carrying out the inte-
gration (5-14). The integral can be performed explicitly using (5-22), and one finds
that the behaviour above the absorption edge is in this case (E — E,)3/2 instead of
(E — E,)'/? given in Table 5-1. We shall come back to this point in Chapter 6 when
discussing the absorption edge including exciton effects.

5-2b Experimental evidence. Two examples: germanium and graphite

The basic features of the optical excitation spectra of many crystals can be explained
on the basis of the analysis of Section 5-2a. The first quantitative success was obtained
when the optical excitation spectrum of germanium was interpreted.[s?

The calculation was performed numerically by sampling the Brillouin zone with a
large number of points and computing the energy levels of valence and conduction bands
at every k point with the semi-empirical pseudopotential procedure which was dis-
cussed in Section 3-4b and whose application to the case of groups IV and III-V com-
pounds was described in Section 4-1. Once the energy bands are computed at a large
number of k values (about one thousand independent points in germanium), one can
see how many times a given energy difference occurs at all possible equally spaced values
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of k, thus numerically computing the joint density of states (5-21) for all couples of va-
lence and conduction bands. The accuracy of the results depends on the number of points
in k space, and, furthermore, an energy difference must be considered equal to another if
they differ by less than a fixed energy 4E. The value of 4E can be made smaller as the
number of k points in the sampling increases, but one must have a large number of points
within any energy difference AE in order to avoid casual scattering. To obtain &,(w) the
joint density of states is divided by w? as indicated by (5-14) and multiplied by a constant
which depends on the matrix element (5-9b) so as to satisfy the sum rule(5-17). The calcula-
ted dielectric functione,(w)so obtained is compared with the experimental curve in Fig. 5-2.

E ——2 Ge
a0}~ 4 = ——Exp.
=== Theory

! ]
@) I'5 2:5 395 4-5 59 65

Fi1G. 5-2. Optical excitation spectrum of germanium shown by its &,(w)

structure. The solid line gives the experimental results and the dashed

line the theoretical results. The optical transitions at.critical points
are explicity indicated. (From Brust et al., ref. [6].),

It can be seen that the optical excitation spectrum from the direct edge at ~0.8 eV
to ~7 eV is well interpreted by transitions from the highest valence band L3 — I';s — X,
to the two lowest conduction bands. It can be observed that the shoulders and peaks
in the density of states at critical points are clearly present in the experimental spectrum.
There is a shoulder corresponding to the transition I';s — I'; and a higher one corre-
sponding to I';5 — I'; 5; the shoulder at L3 — L, is followed by a peak corresponding
to the transition A, — A, somewhere in the A direction; the sharp peak at about
3.5 eV is due to transitions at a number of points nearly degenerate, with a predominant
contribution due to X, — X, . Further confirmation of this interpretation was obtained
by the observation of the spin-orbit splittings associated to the states of the valence
band I';5, L3, and 4, in the corresponding transitions, and by many other properties
of the transitions in the presence of external perturbations which will be discussed
in Chapter 8.

After the success obtained with germanium, this same analysis was carried out
also for silicon, for a large number of III-V compounds and many other crystals;
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we may recognize that it has now become almost a standard procedure. For a detailed
critical review of the experimental determination of the optical constants in a large num-
ber of semiconductors and of their interpretation in terms of interband transitions, we
refer to the book by Greenaway and Harbeke.[!]

As a second example we shall consider the optical excitation spectrum of graphite
in order to show new effects due to the strong anisotropy in the optical constants.
The electronic band structure of graphite has been discussed in Section 4-2, where we
have shown that for this layer crystal the two-dimensional approximation to the band
structure gives meaningful results, and the interlayer interaction can be treated as
a small perturbation. From/(5-14), neglecting the small k, dependence of the energy,

2e2

cmw

&(w) =

2 j e « M, (K)|? 0(Ec(kx, ky) — E(ky, k,) — hw) dk, dk,, (5-29)
BZ
where c is the periodicity in the z direction, and BZ is the Brillouin zone of Fig. 4-10.
From the energy band diagram of Fig. 4-11 we see that the only possible transitions
with energy up to ~6 eV occur between = bands, provided that e M, (k) does not
vanish. When e is parallel to the z axis, the matrix element e - M, (k) between z bands
is zero because these bands are odd under the operation {04/0}. Indicating with &,
the dielectric function for light polarized parallel to the z axis, we can then write for

transition between z bands
&y(w) = 0. (5-30)

If the polarization vector e is perpendicular to the z axis we can take e, - M_,(k) as
independent of k and we have

(@) 262 1

6 =22 Lo, .M, 'f BBy k) — Eslles ky) — i) dly
cms
BZ
2,2
2 L ey Ml (o), (5-31)
m w

where J,, is the expression (5-28). This quantity has been computed numerically by
sampling the Brillouin zone in a large number of points, calculating at each point the
energy difference E.(k,, k,) — E,ky, k,), and determining the relative number of
states within a suitable energy range. Because of symmetry, only the points of the
restricted zone inside the first Brillouin zone have to be considered provided that a
weight factor hlh, (h order of the lattice point group, A4, order of the small point
group of k) is introduced. The triangle I"PQ shown in Fig. 4-10 was divided into 50,000
points, more than sufficient to give accurate values of the joint density of states. We
give in Fig. 5-3 the joint density of states for = bands.”? We notice that the saddle
point Q is responsible for the sharp peak at ~4.5eV. The point I" is a maximum and
gives a step function. The point P is a minimum, but, because of degeneracy, linear
terms in k in the expansion of the energy difference do not vanish, and the density
of states is continuous. In Fig. 5-3 we also give the dielectric function ¢,, and its ex-
perimental values as given by Taft and Philipp.t® We notice the satisfactory agreement
between theoretical and experimental results in the frequency range from 0 to about
6 eV, which is the region of = band transitions.
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Joint density of states and €, (w)(arbitrary u,‘its)

hwlev)

F1G. 5-3. Joint density of states (solid circles) and imaginary part of

the dielectric constant (open circles) computed from the = bands of

two-dimensional graphite. The experimental dielectric function of

Taft and Philipp!®] is also given. (From Bassani and Pastori Parravicini,
ref. [7].)

The contribution to the optical constants from other bands can be dealt with in a simi-
lar way.l”] In general, saddle points are responsible for sharp peaks in the frequency
dependence of the imaginary part of the dielectric function as discussed in the preceding
sections. It has been shown in this way that the peak at ~14 eV is due to the saddle
point at Q for the transition between ¢ bands. It has also been possible to interpret
the structure in &,; as due to transitions between n bands and ¢ bands which are allowed
for polarization of the electric field in the direction of the ¢ axis.

Experimentally the dielectric function &,,(w) has been obtained up to ~25eV by
normal incidence reflectance with the polarization vector of the electric field perpendic-
ular to the z axis.!®? Different experimental procedures have to be applied to determine
&, because of the impossibility of growing samples sufficiently thick in the z direction.
A first procedure consists in performing reflectivity experiments as function of the angle
of incidence and light polarized in the plane of incidence and using the Fresnel relations
for anisotropic material.'®] Another technique consists of analysing electron energy
loss data as function of momentum and energy transfer.[1°) The energy loss intensity
depends on the values of the dielectric functions both perpendicular and parallel to
the ¢ axis, and this allows their determination. It has been proved in this way that
e2))(w) is zero forfiw < 6 eV and exhibits two peaks at ~11 and 16 V.11 This result
indicates that the separation between ¢ and = bands is about 6 eV. Furthermore, the
positions of the peaks correspond fairly well to the only allowed transitions Qf, = Q5.
and Qf, — Qz, at the saddle point Q between ¢ and = bands, as can be seen from Fig.4-11.
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5-3 Multiphoton transitions

The experimental availability of very intense monochromatic sources has made it
possible to detect processes in which two (or more) quanta are simultaneously involved
in an electronic transition. The theoretical probability of two quanta processes is in
practical experimental situations several orders of magnitude lower than that of single
quantum processes, and consequently the detection of two-photon processes can be
conveniently realized in a situation in which one-photon processes are not possible.
In typical two-photon spectroscopy experiments the two light sources are, firstly,
a very intense laser light with fixed frequency, and, secondly, an ordinary light whose
frequency can be changed with continuity. The absorption coefficient for ordinary
light as a function of frequency is measured when the laser beam is present. As lasers
of variable frequency become available, more accurate experiments will be possible
by using two or more laser sources, so that the field of multiphoton spectroscopy
is likely to develop.

The possibility for a two-photon absorption process was first discussed theoretically
by GOppert-Mayert!11(1931), but only with the development of laser light was the effect
detected experimentally.l127 Braunstein!*3J calculated the two-photon absorption coeffi-
cient in a simplified model semiconductor consisting of a valence, a conduction, and
a virtual band. Loudon!!4! gave a more general treatment, and Inoue and Toyozawa!!5?
discussed the dependence of the two-photon absorption coefficient on the polariza}tion
of the beams. )

We wish here to discuss the optical constants in the presence of two radiation beams
of frequency w, and w,, with N; and N, photons per unit volume. In this situation
the perturbation term of Section 5-1b has the form £ e¥'t* + #,eF'2*; to second
order the transition probability rate is of type (5-3) with matrix elements containing
one or the other of the two terms .Z, or .Z,, each with a corresponding argument in
the  function. A first contribution to second order probability rate is the absorption
or emission of two photons fiw, ; another is the absorption or emission of two photons
fiw, , but the most important contribution involves one photon #iw, and one photon fiw, .
We treat explicitly this last case, pointing out that the others could be dealt with along
similar lines. We select the photon energies iw, and 7w, such that each one is less,
but the sum %w, + fiw, is larger than the energy gap. We can choose the vector poten-
tials A,(r, £) and A,(r, 1) of the radiation beams to be polarized in the fixed direction
e, and e,

Ay(r,t) = Ag e, M T e,
and
Ay(r, 1) = Ags e, &' F7e0 4 cc,

We describe only absorption processes, and we shall invoke the dipole approximation
by letting , = n, = 0.

In this approximation we may still consistently disregard the term 42 in the per-
turbing Hamiltonian because it does not depend on space and gives no contribution
to the matrix elements. The effect of this term in higher order approximations has
been considered,!'67 but it is much smaller than the dipole effects which we are going
to calculate.

Following Braunstein’s procedure,!'3] we consider for simplicity a model semi-
conductor with a valence band v, a conduction band ¢, and a typical intermediate
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band f (also called virtual band), which is supposed to give most of the contribution
to the second order transition probability (5-3). Using the same analysis which leads
to (5-9a) but considering two perturbation terms of the type (5-1), we find that the
probability per unit time for a transition from the state y,,, to the state ., considering
as intermediate state yp;, is

27 [ eAy; N\ [ edos \?

P ks ks = P ( e ) ( mcz)
e, » M4(k) e, - My, (k)

Ey(k) — E(K) — foo,

My, = {yp(k, 1)| p Iy, (k, 1)),

M = el DI P Ipy(k, 0. }

As shown in Section 5-1, it is a simple matter to obtain the absorption coefficient for
photon‘sN;l\mergy fiw, in the presence of N, photons per unit volume of energy #iw,
from the transition probability (5-32). We obtain the expression

87!3’182'N2 2d3k €, Mcp(k) ey Mﬂv(k)
cm4"1"§w1w2 (2n)® Eg(k) — E(k) — hw,
;¥4

€2 Mcp(k) €y M,,,,(k)
Ex(k) — E(k) — fioy

2

O(E(k) — EJk) — hwy — hw,),  (5-32)

where
(5-33)

N

x(w;) =

2

€. Mcp(k) € Mﬂv(k) 5(Ec(k) - E‘,(k) — hw, — flwz), (5-34)

Ep(k) — E,(k) — ho,

where n, and n, are the refractive indices at the two frequencies; the other symbols
have already been explained. In deriving (5-34) use has been made of the relation

242 2
n3 Ao = N.A
s, Vahwa,
2nc

which connects the energy density (n2E?)/4n of the classical electromagnetic theory
with the number of photons per unit volume.

| E
\ /Iirfual band

ﬁ

Conduction band

Valence band

F1G. 5-4. Model semiconductor band structure to calculate two-photon
absorption.
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The expression (5-34) we can evaluated analytically without difficulty if we make
the further approximation that the valence, conduction, and virtual bands are all
spherical bands as exemplified in Fig. 5-4. In such a case we can write

h2

Eyk) = —y, k2,
2m

hz
Ey(k) = ?’pz—m-kz + 4E,

E (k #
¢ )—yczm

k* + Eg,

where AE and E are shown in Fig. 5-4 and y, is a positive number which denotes the
inverse of the effective mass in unijts of m. In the case of allowed transition (i.e. in the
case when the matrix elements (5-33) do not vanish because of symmetry), we neglect
in (5-34) the smooth dependence bf the matrix elements from k. We can then integrate
expression (5-34) neglecting the ‘mixed term and obtain the expression

23/27534 |Mcﬂ|2 IMpvlzNz

11
w,) = — 4+ — V(hw, + B, — E)Y?2  (5-35a
o) = e P wlwz( = C)(  +fiog — Eg)'? (5-352)
where
B 2
B=[AE+ 22 (o, 4ty — Eg) =ty | (5-35b)
| Ye + Vo B

B 2
C=|4E + u(ﬁah + hw: - EG) - fl(&)zT .
_ Ye T Vo i

(5-35¢)

The value of x(w,) given by (5-35) is in practical experimental situations several orders
of magnitude smaller than that obtained for one-photon processes at the critical point
M,, but it can exhibit a much sharper behaviour just above the energy threshold be-
cause expression B and C can become very small.

Braunstein’s procedure!!®) has been extended by Bassani and Hassan!!”) to all the
different types of critical points discussed in Section 5-2. For two-photon processes
it turns out that singularities in the optical constants appear at all critical points and
are sharper than those obtained for one-photon processes because of the effect of the
energy denominators in the transition probability (5-32). Figure 5-5 shows a typical
diagram of optical constants for a two-photon process in the vicinity of a critical
point M, .

In general, new basic information can be obtained by two-photon spectroscopy
because the selection rules for such optical transitions differ from those for one-photon
processes. In fact, from (5-33) we see that the allowed transitions in two-photon spectro-
scopy are those for which matrix elements of the appropriate components of the oper-
ator p between valence virtual states and between virtual conduction states can be
simultaneously different from zero. In a crystal with complete cubic symmetry, for
example, the only matrix elements different from zero at I" from an initial state of
symmetry I'; are those to states of symmetry I',s, and from states I';s to states of
symmetry I'y, I'y,, I'is or I';s (as can be seen from Table 2-18). We therefore have
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F1G. 5-5. Two-photon absorption coefficient as a function of hw,,

near a saddle point M, . The energy of the critical point is E, and the

fixed laser frequency is ®,. (From A.R.HAassAN, Nuovo Cimento
70B, 21 (1970).)

the result that from'a state I'; two-photon transitions are allowed only to states of sym-
metry I'y, I'y,, I'ys, or I';s and one-photon transitions are allowed only to states of
symmetry I’y 5.

For all crystals which possess inversion symmetry, a particularly important selection
rule is valid at the point I" (k = 0) and at those symmetry points which contain in-
version symmetry since the irreducible representations can be classified as even or odd
with respect to inversion. Whilst the allowed transitions in one-photon processes are
amongst states with opposite parity, the allowed transitions in two-photon processes
are amongst states with the same parity since the intermediate states must have opposite
parity to initial and final states. In this situation, the one-photon and two-photon
absorption processes are complementary tools for the investigation of the optical
properties.

Another important selection rule of general character appears at any k vector in
layer type crystals such as those described in Section 4-2. With light polarized per-
pendicular (parallel) to the z axis, one-photon transitions are allowed only amongst
states of the same (opposite) parity with respect to o, as we have discussed in Section 5-2b.
Two-photon transitions with both photons polarized perpendicular or parallel to the
z axis are allowed only amongst states of the same parity with respect to o,. If the two
beams have different polarization with respect to the z axis, the allowed transitions
are only those amongst states of opposite parity.
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So far the experimental results obtained in semiconductors with two-photon spectro-
scopy!!?] have been mainly limited to cubic crystals without inversion symmetry and
the power of the general selection rules described above has not been fully exploited. It is
of interest to observe that two-photon spectroscopy may reveal the presence of saddle
points in the electronic structure which could not be seen in the usual spectroscopy
because they are forbidden to first order. | |

Theoretical results have been obtained in a-similar way also for three-photon tran-
sitions by Bassani and Hassan,!'”? and preliminary experimental evidence for three-
photon transitions has been obtained in CdS by Catalano et al.l'8 We do not wish
to discuss these points any further because this field is in its infancy at present, and
detailed discussions will have to be left to a later time.

5-4 Indirect band-to-band transitions

5-4a General remarks and electron—-phonon interaction

In the previous sections we have considered the interaction of the electrons with
the radiation field and we have shown that only vertical transitions may occur. As
indicated in Chapter 4, there are a number of crystals, such as semiconductors silicon,
germanium, etc., and insulators like AgCl whose electronic structure is characterized
by the fact that the bottom of the conduction band and the top of the valence band
are at different points of the Brillouin zone. Optical transitions between valence and
conduction extrema would be forbidden in this case by momentum conservation (see
Section 5-1). Such transitions are experimentally observed, however, albeit they are
much weaker than the direct transitions.

Transitions between states which are not vertical in an energy band diagram are
called indirect transitions. The possibility of indirect transitions is due to the interaction
of the electrons with the vibrations of the lattice. The theory was first provided by
Bardeen et al.!'9) in order to explain the absorption tail of germanium.

It is well known that one can show by means of canonical transformations!2°) that
the Hamiltonian (3-9) describing the motion of the nuclei in the adiabatic approximation
is equivalent to the Hamiltonian of a system of independent harmonic oscillators
when the total potential energy is expanded up to second order in the nuclear dis-
placements from the equilibrium position and normal coordinates are introduced.
Corresponding to every normal mode of wave vector q there is an harmonic oscillator
whose energy can change by integer multiples of #w,. The frequency w, as a function
of momentum gives the classical vibrational dispersion spectrum, and the quanta 7w,
by analogy with the photons of the electromagnetic field, are called phonons. At a given
q vector of the Brillouin zone the phonon states can be classified according to the
irreducible representations of the group of the vector q, and their number is given
by the number of degrees of freedom of the atoms in the unit cell.

Even in the adiabatic approximation, the presence of the phonon field produces
an electron-lattice interaction.t?% In fact, during the vibrations of the lattice the atoms
are displaced from their regular lattice positions, and the actual potential on any
electron is consequently changed. To illustrate typical consequences of electron-lattice-
interaction, we consider a simplified model in which the electron crystal potential is taken
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as a sum of superimposed atomic-like potentials rigidly following the displacerr.lents. of
the nuclei. In the above approximation the electron-lattice perturbation Hamiltonian
H,; can be written as

H, =Y [V(r — R, — 6R,) — V(r — R)], (5-36)
Ra

where the sum runs on all the equilibrium atomic positions R, in the crystal, OR, rep-
resents the vibrational displacement, and V(r — R,) is the atomic-like potential
corresponding to the atom based at R,. We expand (5-36) in terms of 6R, and retain
the first order term
H,y = — ZéRa * V,V(l‘ - Ra)- (5'37)
Ra

It is convenient to expand 6R, in normal coordinates, which is always possible because
of the translational symmetry of the lattice. The electron-lattice interaction (5-37)
can therefore be separated into a sum of terms, each appropriate to a given phonon
of a given branch, of the type

H,, = (2 A:’ )1/2 [A(q) Eeae“" "Ramog) g V(r — R,) + c.c.] : (5-38)

Wq

where e, is an appropriate polarization vector corresponding to a phonon of momentum q
and frequency w, M indicates the total mass of the crystal, and 4(q) and 4*(q) are the
annihilation and creation operators respectively. The normalization factor (%/2Mw)*/?
has been introduced so that the matrix elements of A(q) and 4*(q) between multiphonon
wave functions satisfy the conditiont??!

(=1 A@ny = /n,
n+ 1] A%@) In) = /(n + 1),

where |n) indicates a state with phonon occupation number #n. The electron-phonon
interaction term (5-38) can be rewritten as

(5-39)

H,, = A(q)e~""a" V,(q,r) + c.c. (5-40a)
with
h 1/2
Vg, 1) = Y. e Ree, . V,V(r ~ R,). (5-40b)
2Mw, Ra

We notice that (5-40b) is a Bloch function of vector q. When crystal symmetry is fully
exploited, V,(q, r) belongs to an appropriate irreducible representation of the vector q
as explained in the footnote of Section 3-2c¢. The first term in (5-40a) produces absorp-
tion of a phonon, and the second produces emission of the same phonon.
The theory of indirect optical transitions can now be developed by considering the
perturbation Hamiltonian
H' = H, + H,, (5-41)

and using the results of second order time dependent perturbation theory summarized
by formula (5-3). We obtain all possible expressions of the type (5-3), where one of
the matrix elements relates to the electron-radiation interaction and the other to the
electron-phonon interaction of the perturbation (5-41). This is because the matrix
element of H. conserves momentum, while the matrix element of H,, transfers
a specific momentum q.
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5-4b Properties of indirect transitions

We wish now to discuss further the absorption coefficient in a model semiconductor
with energy bands exemplified by Fig. 5-6. The transition probability per unit time
of a process in which the valence electron g, is izttered to the conduction state g,
and a photon of energy fiw and a phonon of momentum q = k, — k, (and energy #iw,)

are both absorbed can be obtained from eq. (5-3) as

P smeicrs = 2 (er)zI {Yer,| V(q,T) |'Ppk.> ”:/2 {¥pi,l € * P W, 2
T w Ume ) | Ey(k,) — Ey(k) — ho
x 0(E (k) — E,(k;) — Aw + Aw,). (5-42)
AR VR | E } Virtual band
T UE

Coo e redérale N
Ecic e Conduction band

lens

Tél, 021-47 111

¥,

V.

Fi1G. 5-6. Model semiconductor band structure to calculate the ab-
sorption coefficient due to indirect transitions.

Valence band

In this model we have considered only one virtual band, but it would be easy to add
other similar terms associated with other virtual states. In (5-42) n, denotes the phonon
occupation number, which in thermal equilibrium is given by the Bose-Einstein ex-
pression

1

e(ﬁw‘l/kf) _ 1 *

ng =

Using the standard procedures of Section 5-1 we obtain the following expression for
the absorption coefficient:
4n2e?

[ [
nem?o (2n)? (2n)®

BZ BZ

X phonon abs(w) =

Weial Vo@D 951> 15 P € B W) P sk 0 ) — E ) — heo o
Ey(k,) — E,(k,) — ho (Ekz) = By(ky) = oo + o).

X

(5-43)
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As an example of the application of (5-43) we consider the case of indirect optical
transitions between spherical bands. Furthermore, we suppose that the quantity

C — <'p0k2| Vp(q; r) l'pﬂk1> <"Ppk,| e- p W’uk;) 2
Ep(kx) - Eu(kl) — hw

to a good degree of approximation can be regarded as independent of the wave vectors
k, and k, in the vicinity of the extrema;"this is a good approximation for allowed
transitions when the energy denominator in (5-43) is not too small. The absorption
of light begins at fiw = Eg — kO, where Eg is the energy gap and k0 is the energy of
the phonon with vector g, equal to the vector which connects band extrema in the
Brillouin zone. For phonon energies fiw a little larger than Eg — k0, transitions involve
pairs of valence and conduction states separated in momentum space by vectors very
near to g, so that it is a good approximation to take the energy of the phonon involved
as a constant equal to k6 and to maintain the phonon occupation number n, independent
of k; and k,. The expression (5-43) then becomes

4n2e? 2
Xphonon aba(w) = JL?E.D— ————dk, dk, 6(Ec(k2) - E,,(kl) — ho + k0)
ncm?w 2n)3 (2n)?
BZ BZ (5'44)
In the case of the parabolic bands, we can write
h2k32 h2k?
Ec(kz) = * + EG and Ev(kl) = = * ?
me 2m,

where k; and k, are referred to their respective extrema. If we introduce the above
expression into (5-44), use polar coordinates, and perform the integrations by means
of property (5-22), we obtain

2 n’k; APk}
f f-an—)s_(h_);dkl dk26(2m: + 2m? + E; — hw + k@)

BZ BZ

0 for Aiw < E; — kO
— *\ 3/2 %*\3/2
L (2ma N (2me \*% o — Eg + K8)* for ho > Eg — k.
8(2n)® \ A? h?
Substituting the above expression into (5-44) we find that the contribution to the ab-
sorption coefficient due to the absorption of a phonon is given by

0 for hw < E; — k0,
Xphonon lbs(w) = (5'45 a)
Ci(hw — Eg; + k0)? ne, for hw > Eg— kb,
where
2,2 *\ 3/2 %\ 3/2
c, =Lhe 1 (2m \7F(2m; \TF (5-45b)
o ncm? 8(2n)3 \ A2 h?

Another contribution to the absorption coefficient is due to the emission of a phonon
and can be obtained using the same procedure, the only differences from the previous
case being the sign of the phonon energy and the normalization (5-39). We obtain

0 for hw < Eg + kb,

“ph;non emlss(w) = (5'46)
Cu(hw — Eg — kB)? (ny, + 1) for fiw > Eg + k6,

as the contribution to indirect transitions due to creation of a phonon of momentum go.
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L]

The total absorption coefficient is then /

‘xtot(w) = ‘xphonon abs(w) + ‘xphonon emlss(w)s (5'47)

which depends quadratically on energy and exhibits two steps—one for fiw = Eg — k0
and one for fiw = Eg + k0, the difference between the two steps being equal to 2k6.
We should like to point out that indirect transitions have a strong temperature de-
pendence because of ng,; at very low temperature only the contribution &pponon emiss
can be observed but, increasing the temperature, the contribution &pnenon avs COMes
in with relative intensity given by the Boltzman factor. One should note that at a given q,
more phonons can participate in optical transitions, each of them giving a contribution
to the absorption coefficient in accordance with (5-45) and (5-46).

Selection rules play a role in determining which phonon contribute to indirect tran-
sitions. The allowed transitions are those for which the matrix elements of the appro-
priate component of the operator p, and the matrix element of the operator V,(q, r)
with the symmetry of the phonon in consideration between virtual states and initial
or final states can be simultaneously different from zero. Using the results of Section 2-4,
selection rules for indirect transitions can easily be established. They have been used by
Lax and Hopfield?!! to locate the type of phonon which participate in the absorption
edge of germanium and silicon and by a number of authors for other compounds.t221

In conclusion it is worth-while to mention that the theory of indirect transitions
has been extended to third order to include the cases of two-phonon one-photon tran-
sitions and two-photon phonon-assisted transitions.[?3] In particular, Bassani and
Hassan[23] have shown that the probability of two-photon one-phonon transitions
is much higher than the probability of three-photon transitions with the intensity
of the light sources presently available. In a similar way, one-photon one-phonon
transitions are much more probable than two-photon transitions, and for this reason
we have attributed the absorption of a typical semiconductor sketched in Fig. 5-6 to
one-photon phonon-assisted transitions.

APPENDIX 5A
Matrix elements of one-electron and two-electron operators between determinantal states

In this and the following chapter we need matrix elements of one-electron and two-
electron operators between Slater determinantal states.[?47 We summarize here some
results which are useful in their calculation.

Let |4) be the determinantal state
14> = o#{a,(1) ay(2) ... a(N)}

for a N particle system, a; being a set of orthonormal one-electron function and &/ the
operator of antisymmetrization with the appropriate normalization factor (N!)-1/2,
Let

N
G, = :=21 g.1()
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be an operator sum of one particle operators and
GZ = ‘i‘ Z g2(i’.])
t+J .

be an operator sum of two-particle operators.
The expectation values of the operators G, and G, on the state |4) are, respectively,

(A| Gy |4y = Y Kal g1 la)) (5A-1)
and :
(A| G, |4) =1 % Kaa)l g2 laa;> — {aayl g2 |aar], (5A-2)

where the usual abbreviation for two-electron integrals has been used, i.e.
{a1a;| g2 lazas) = ff a?(h) a3(x;) 82(ry, 12) as(ry) au(x;) dr, dr,.

The matrix elements of the operators G, and G, between the states:

4> = {a (1) a;(2) o k) ... an(N)}
and
|IBY = o#{ai(1) ax(2) ... bu(k) ... ay(N)},

which differ by only one of the one-particle functions, are, respectively,

(Al Gy |BY = {ail g1 16> (5A-3)
and
(A| G, |B) = ; Kaa)l g2 1bray) — {awayl g2 la;bi)]. (5A-4)
From (5A-1) it follows that
(B| G, |B) — {A| Gy 14> = (bl g1 1bx> — <al &1 |la). (5A-5)

From (5A-2) we easily obtain
(B| G |B) — (4| G, |4)
= Zijnaﬂ 82 1bua;)> — {bayl g2 la;bi)]

— [Kbuail g2 |bxax) — <{bxa| g2 lab)]
- ; Kawa)l g2 lava;) — {avajl g2 lajac)]. (54-6)

The matrix elements of the operators G; and G, between the states

|4) = {a,(1) a>(2) oo (k) ... ai(D) ... ay(N)}
and

IC> = H{a,(1) ax(2) ... c& ﬂ(_ll ay(N)}
which differ in two one-electron functions, are

{41 G, [C> =0 (5A-7)
and

(A G2 [C) = {avay] g2 lexer) — avay) g2 lerci). (5A-8)

The matrix elements of the operators G; and G, between states which differ by more
than two pairs of functions are zero.
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APPENDIX 5B
Koopmans’ approximation

From Section 3-1 we consider the Hamiltonian for the many-electron system of the
form

N 1 e?
H(ry, 12, ..., Ty) = Z H; + — Z -_— (5B-1)
i=1 2% ry
with
h? z,e?
H=-—Vi-Yy_ T .
2m T |R; —ryf

We write the ground state of the system in the form

Yy = d{%(l)v v2(2), ..., 'PN(N)}»

where the y, satisfy Hartree-Fock equations

Hypy: = Ey,, (5B-2)
Where Hye = H(1) + Veou(1) + Vorea(1) (58-3)
with
Vewiti(D) = 2 1) f (2)—%(2) dr, (584)
and
Vet = = 20D f (2)—%(2) dr. (58-5)

In (5B-4) and (5B-5) integration involves also summation over spin coordinates.
Multiplying (5B-2) by {y;| we have in general for any Hartree-Fock state:

e? e?
E, = (ol Hilpsd + ;[«ml < tyiw> = <ol = lwm]. (58-6)
12 12

Consider a trial excited state @, ,, obtained by replacing in ¥, one of the function ¥y,
with an excited function ¢,, with all other functions unchanged. This corresponds to
neglecting dynamical polarization effects. We may thus write

(pm,w: = '21.{'/’1(1), v2(2), -.os @i()s ..., Yu(N)}.
By using expression (5A-5) and (5A-6),
Pyl He 1Py, > — <¥ol H, |¥o)
= Lol Hy o> — <wil Hy Iy

| e? e?
JOE + JZ[(‘P:'PJI — o) — {pwl — |’PJ‘P!>:|

. Fi2 Fi2
- .F,Jcrale
" S e? e?
N S — | Lol — o> — el — lpipsd

ivw :..._; SUISSG ri2 ri2

Tél. 021-47 11 11 e? é?
= Z[(‘PHI’JI — |y — <yl — |’I’ﬂ/’t>]- (58-7)

J ry2 ri2
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When the excited function ¢, satisfies the Hartree-Fock equation (5B-2) with V,,,
and V., defined by (58-4) and (5B-5), (5B-7) takes the more effective form

<¢w‘.w4| He l¢¢|.w4> - <YIO| He Ig’0>

2 2
=E — E — [(‘Pﬂl’tl —e—lfpt'l’O — Lowil —e—'l'l’t‘Pt)], (58-8)

ri2 Fi2

where use has been made of (58-6) and of a similar expression for the eigenvalue E{
of @;. In most practical situations in crystals, the electron-hole interaction

2 2
[(tpml oy — <ol < Iwm)]

ri2 ry2

is negligible compared with the difference E{ — E, because the wave functions extend
over the entire lattice. In this case we have

<¢¢mm| H, Idjw.w.) - <YI0| H,|¥o) ~ E; — E,, (5B-9)

i.e. the difference of the expectation values of the many-body Hamiltonian H, on two
determinantal states which differ by only one of the one-particle functions equals the
difference of the corresponding Hartree-Fock eigenvalues (Koopmans’ approximation).

With a similar procedure it would be easy to show that the Hartree~-Fock energy of
each one-tlectron state coincides with the energy required to remove that electron
from the system (Koopmans’ theorem), provided that one neglects dynamical polari-
zation effects.

When the Hamiltonian (5B-1) does not contain spin dependent terms and the ground
state ¥, has total spin equal zero, it is convenient to take trial excited states of a definite
spin multiplicity. For triplet states (total spin = 1) we have:

Py 304>
7 @it = Pt | (58-10)
% RS ]
and for singlet states (total spin = 0)
L(¢wv}rw<} + Py g0 (5B-11)

V2
where ¢y, i3 indicates the product ¢(r) &, @,(r) B respectively.
Weindicate trial excited states of type (5B-10) and (5B-11) of a given spin multiplicity
with @) | where M = 1 for triplet states and M = 0 for singlet states. With proce-
dures similar to those applied to derive (58-8),

(POO | H, |10 > — (Wl H, |¥o)

Piswi Piryi
’ e2 82
=E — E - [(‘Pt’l’tl — |l — 20 @il — I'Pl‘Pl)]’ (58-12)
Fi2 ri2

where 8y = 1 for singlet states and dy = O for triplet states, and integration involves
only space coordinates. We will use this result in the next chapter in discussing singlet
and triplet excitons. In the Koopmans’ approximation (5B-12) is replaced by (58-9).
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