PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103

Plan for Lecture 2:

Reading: Chapter 1 (especially 1.11) in JDJ;
Ewald summation methods

1. Motivation
2. Expression to evaluate the electrostatic energy of an extended periodic system
3. Examples

1/13/2017
PHY 712 Spring 2017 - Lecture 2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PHY 712 Electrodynamics

\qquad
MwF 9.9:50 AM OPL 103 hitp:/Imww whuedu-natalles 17phy712!

Course schedule for Spring 2017 (Preliminary schedule - subject to frequent adjustment.)					
	Lecture date	JDJ Reading	Topic	HW	Due date
1	Wed. 01/11/2017	Chap. 1	introduction, unts and Poisson equation	11	01/18/2017
2	Frt: 01/13/2017	Chap. 1	Electrostatic energy calculations	\%	01/18/2017
	Mon: 01/16/2017		MLL K Honday - mo class		
3	Wed 01/18/2017				
4	Fri: 01/2012017				
5	Mon: 01/23/2017				
-	- athemas				
	1/131/2017		PHY 712 Spring 2017 - Lecture 2		2

Ewald summation methods -- motivation
Consider a collection of point charges $\left\{q_{i}\right\}$ located at points $\left\{\mathbf{r}_{i}\right\}$.
The energy to separate these charges to infinity $\left(\mathbf{r}_{i} \rightarrow \infty\right\}$ is
$W=\frac{1}{4 \pi \epsilon_{0}} \sum_{(i, j, i>j)} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}$.
Here the summation is over all pairs of (i, j), excluding $i=j$.
It is convenient to sum over all particles and divide by 2 in order to compensate for the double counting: \qquad
$W=\frac{1}{8 \pi \epsilon_{0}} \sum_{i, j, i \neq j} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}$.
Now the summation is over all i and j, excluding $i=j$.
The energy W scales as the number of particles N. As $\mathrm{N} \rightarrow \infty$, the ratio W / N remains well-defined in principle, but difficult to calculate in practice.

Ewald summation methods - slight digression

When the discrete charge distribution becomes a continuous charge density: $q_{i} \rightarrow \rho(\mathbf{r})$, the electrostatic energy becomes

$$
W=\frac{1}{8 \pi \epsilon_{0}} \int d^{3} r d^{3} r^{\prime} \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

Notice, in this case, it is not possible to exclude the "selfinteraction". This expression can be written in terms of the electrostatic potential $\Phi(\mathbf{r})$ and field $\mathbf{E}(\mathbf{r})$:

$$
\begin{aligned}
& W=\frac{1}{2} \int d^{3} r \rho(\mathbf{r}) \Phi(\mathbf{r})=-\frac{\epsilon_{0}}{2} \int d^{3} r\left(\nabla^{2} \Phi(\mathbf{r})\right) \Phi(\mathbf{r}) . \\
& W=\frac{\epsilon_{0}}{2} \int d^{3} r|\nabla \Phi(\mathbf{r})|^{2}=\frac{\epsilon_{0}}{2} \int d^{3} r|\mathbf{E}(\mathbf{r})|^{2} .
\end{aligned}
$$

1/13/2017 PHY 712 Spring 2017 - Lecture 2

Evaluation of the electrostatic energy for N point charges:
 $\frac{W}{N}=\frac{1}{8 \pi \epsilon_{0}} \frac{1}{N} \sum_{i, j ; i \neq j} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}$.

Ewald summation methods - exact results for periodic systems
\qquad
$\frac{W}{N}=\sum_{\alpha \beta} \frac{q_{\alpha} q_{\beta}}{8 \pi \varepsilon_{0}}\left(\frac{4 \pi}{\Omega} \sum_{\mathbf{G} \neq 0} \frac{e^{-i G \tau_{\mathrm{af}}}}{G^{2}}-\sqrt{\frac{\eta}{\pi}} \delta_{\alpha \beta}+\sum_{\mathbf{T}} \frac{\operatorname{erfc}\left(\frac{1}{2} \sqrt{\eta}\left|\boldsymbol{\tau}_{\alpha \beta}+\mathbf{T}\right|\right)}{\left|\boldsymbol{\tau}_{\mathrm{a} \mathrm{\beta}}+\mathbf{T}\right|}\right)-\frac{4 \pi Q^{2}}{8 \pi \varepsilon_{0} \Omega \eta}$
Note that the results should not depend upon η (assuming that all summations are carried to convergence). In the example of CsCl having a lattice
\qquad constant a, we show two calculations produce the result:
$\frac{W}{N}=-\frac{e^{2}}{8 \pi \epsilon_{0}} \frac{4.070722970}{a} \quad$ or $\quad \frac{W}{N}=-\frac{e^{2}}{8 \pi \epsilon_{0}} \frac{4.070723039}{a}$
See lecture notes for details.
\qquad
\qquad

1/13/2017

