PHY 712 Electrodynamics
9-9:50 AM MWF Olin 103

Plan for Lecture 3:
Reading: Chapter 1 in JDJ

1. Review of electrostatics with one-
dimensional examples

2. Poisson and Laplace Equations
Green’s Theorem and their use in
electrostatics
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Instructor: Natalie Holzwarth Phone:788-5510 Office:300 OFL e-mall-nataliefwty eduy

Course schedule for Spring 2017

{Praliminary schedule — subject to frequent adjustment.)

Lecture date | JOJ Reading Topic HW Due date
1 Wed 01112017 [Chap. 1 Introduction, unfts and Polssan equation &1 01182017
2 Fr:01M32017  (Chap. 1 Elecirostat ersrgy calculations L oneo7
Mon: 01162017 MLK Holday - 0o clgss
3 Wed DINEZ0YT Chap 1 Poisson equation and Gn #3 a1202017

4 Fn 017202017
8 Mon 01732017
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A:00pen - Olin 101
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3:30pen - Olin Lownge
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Poisson and Laplace Equations
We are concerned with finding solutions to the Poisson
equation:

Vo, (r) =20
&
and the Laplace equation: 0
VO, (r)=0

The Laplace equation is the “homogeneous” version of the
Poisson equation. The Green's theorem allows us to
determine the electrostatic potential from volume and surface
integrals: 1

()= [, d'rp( )G +

ZLJd%[GuJJV®u3—®a5VGQJd]?
T S
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General comments on Green'’s theorem

AL UCR
i-lis dar I:G (r,r)Vo(r)- q)(r')V'G(r,r'):I g

This general form can be used in 1, 2, or 3 dimensions. In
general, the Green's function must be constructed to satisfy
the appropriate (Dirichlet or Neumann) boundary conditions.
Alternatively or in addition, boundary conditions can be
adjusted using the fact that for any solution to the Poisson
equation, (Dp(r) other solutions may be generated by use
of solutions of the Laplace equation

O(r)=D,(r)+CD (r),for any constant C.
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“Derivation” of Green’s Theorem
_p)

80
Green's relation:  V"*G(r,r') = 475" (r - ).

Poisson equation: V’®(r) =

Divergence theorm: .[d}r V-A= QSer At
v S

Let A= f(r)vg(r)-g(r)Vf(r)

Jd3r V<( f(r)vg(r)-g(r)vf (r)):q.Jer (f (r)vg(r)-g(r)vf (r))-f'




“Derivation” of Green’s Theorem
_p)

SO
Green's relation: V"’G(r,r) = 475" (r —r').

Poisson equation: V’®(r) =

J.d3r (f (r)Vzg(r)— g(r)sz (r)) :(ﬁdzr (f (r)Vg(r)— g(r)Vf (r))-f'

f(r) <> o(r) 9(r)=G(r.r')
(r) = igofv 4 p()BEr) +

4i j d’r'[G(r.r)Vor) - or)VG(r,r)]F.
v/ S
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Example of charge density and potential varying in one dimension
Consider the following one dimensional charge distribution:
0 forr < —a
—pyp for—a<z<0
plr) = )
+pp forl<r<a

0 forz > a

We want to find the electrostatic potential such that

@d(z) _ plx)

dr? S0

with the boundary condition ®(—oc) = 0.
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Electrostatic field solution

The solution to the Poisson equation is given hy:

0 forr < —a
\ for—a<x<0
P(x) =
forl<z<a
fore >a
The electrostatic field is given by:
0 forr < —a
for—a <ax <0
E(r) =
for0<r<a
0 forr >a
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Electric charge density
Electric potential
Electric field
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Comment about the example and solution

This particular example is one that is used to model
semiconductor junctions where the charge density is
controlled by introducing charged impurities near
the junction.

The solution of the Poisson equation for this case can
be determined by piecewise solution within each of the
four regions. Alternatively, from Green's theorem in
one-dimension, one can use the Green's function

cb(x):Lf G(x,X)p(X)dX  where G(X,X)=47X.
4re, o

X_ should be take as the smaller of X and Xx'.
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Notes on the one-dimensional Green’s function

The Green's function for the one-dimensional

Poisson equation can be defined as a solution to

the equation: V’G(X,X) = —4rx5(X—X)

Here the factor of 47 is not really necessary, but

ensures consistency with your text's treatment of

the 3-dimensional case. The meaning of this expression
is that x' is held fixed while taking the derivative with
respect to X.
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Construction of a Green’s function in one dimension

Consider two independent solutions to the homogeneous equation
Vi (x) =0
wherei=1or2. Let
. 4r
G(x,x)= WQ(XJ@(XQ-

This notation means that X_ should be taken as the

smaller of X and X' and X_ should be taken as the larger.

W is defined as the "Wronskin":
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w =209, -0 9L,
X dx
Summary

V’G(X,X) = —4r5(X—X)

G(x.x) =‘V‘N—”¢z(x<>¢z<x>)

W =00, ) gy S0
X dx

dG(x,x’)J _dG(x,x')J
dx X=X +e dx X=X —¢
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One dimensional Green'’s function in practice

®(x) =éj.;G(X,X')p(X')dX'

zﬁ{fﬂe(x,x)p(x‘)dx‘ +ij(x,x’)p(x’)dx'}

For the one-dimensional Poisson equation, we can construct

the Green's function by choosing ¢(X) =X and ¢,(x) =W =1:

D(x) = SL{_[; X p(x)dx + x.[jp(x')dx'}A
0

This expression gives the same result as previously
obtained for the example p(x) and more generally is
appropriate for any neutral charge distribution.
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Orthogonal function expansi and Green's functions

Suppose we have a “complete” set of orthogonal functions {u,,(x)} defined in the
interval ry < r < x5 such that

[ P Un () um(2) dx = dyym-

We can show that the completeness of this functions impl

that

Z wp(r)u,(z') = d(x — 2').

n=1

This relation allows us to use these functions to represent a Green's function for our
system. For the 1-dimensional Poisson equation, the Green's function satisfies

& o) =il
a3 Ar,r)=—dmb(x —2').
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Orthogonal function expansions —continued

Therefore, if

L

<5 UnlT) = —agu.(r),

e My lx) Lo T
where {u,,(x)} also satisfy the appropriate boundary conditions, then we can write |
Green's functions as
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Example
For ple, consider the ple discussed earlier in the interval —a < < a with
0 forr < —a

z - for—a<r<0
plr)= X (24)
by forl<zr<a

0 fore >a

We want to solve the Poisson equation with boundary condition dd(—a)/dr = 0 and
d®(a}/dx = (. For this purpose, we may choose

| f[ar
unlz) = [~ sim [ | 25)
The Green's function for this case as:
= s
G(r, )= — (26)
n=l)
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Example — continued

. ;
B(x) = 22 (I[i Y. —
o 1=
n=0 ‘!




