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PHY 712 Electrodynamics
9-9:50 AM  MWF  Olin 103

Plan for Lecture 3:

Reading: Chapter 1 in JDJ

1. Review of electrostatics with one-
dimensional examples

2. Poisson and Laplace Equations

3. Green’s Theorem and their use in 
electrostatics
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Poisson and Laplace Equations
We are concerned with finding solutions to the Poisson 
equation:

and the Laplace equation:

The Laplace equation is the “homogeneous” version of the 
Poisson equation.  The Green's theorem allows us to 
determine the electrostatic potential  from volume and surface 
integrals:
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General comments on Green’s theorem
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This general form can be used in 1, 2, or 3 dimensions.   In 
general, the Green's function must be constructed to satisfy 
the appropriate (Dirichlet or Neumann) boundary conditions.  
Alternatively or in addition, boundary conditions can be 
adjusted using the fact that for any solution to the Poisson 
equation, other solutions may be generated by use 
of solutions of the Laplace equation
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“Derivation” of  Green’s Theorem
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“Derivation” of  Green’s Theorem
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Comment about the example and solution

This particular example is one that is used to model 
semiconductor junctions where the charge density is 
controlled by introducing charged impurities near
the junction. 

The solution of the Poisson equation for this case can 
be determined by piecewise solution within each of the 
four regions.   Alternatively, from Green's theorem in 
one-dimension, one can  use  the Green's function 
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Notes on the one-dimensional Green’s function
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Construction of a Green’s function in one dimension
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Summary 
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One dimensional Green’s function in practice

 
0

0

21

1
( ) ( , ') ( ') '

4

1
         = ( , ) ( ) ( , ) ( )

4

For the one-dimensional Poisson equation, we can construct

the Green's function by choosing ( )   and ( ) 1; 1:
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This expression gives the same result as previously 
obtained for the example (x) and more generally is 
appropriate  for any neutral charge distribution.
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