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Qn the Classical Radiation of Accelerated Electrons
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This paper is concerned with the properties of the radiation
from a high energy accelerated electron, as recently observed
in the General Electric synchrotron. An elementary derivation
of the total rate of radiation is first presented, based on Lar-
mor's formula for a slowly moving electron, and arguments of
relativistic invariance. Ke then construct an expression for
the instantaneous power radiated by an electron moving
along an arbitrary, prescribed path. By casting this result
into various forms, one obtains the angular distribution, the
spectral distribution, or the combined angular and spectral
distributions of the radiation. The method is based on an
examination of the rate at which the electron irreversibly
transfers energy to the electromagnetic field, as determined by
half the difference of retarded and advanced electric field
intensities. Formulas are obtained for an arbitrary charge-
current distribution and then specialized to a point charge.
The total radiated power and its angular distribution are ob-
tained for an arbitrary trajectory. It is found that the direc-

tion of motion is a strongly preferred direction of emission at
high energies. The spectral distribution of the radiation de-
pends upon the detailed motion over a time interval large
compared to the period of the radiation. However, the narrow
cone of radiation generated by an energetic electron indicates
that only a small part of the trajectory is eRective in producing
radiation observed in a given direction, which also implies
that very high frequencies are emitted. Accordingly, we
evaluate the spectral and angular distributions of the high
frequency radiation by an energetic electron, in their de-
pendence upon the parameters characterizing the instan-
taneous orbit. The average spectral distribution, as observed
in the synchrotron measurements, is obtained by averaging
the'electron energy over an acceleration cycle. The entire
spectrum emitted by an electron moving with constant speed
in a circular path is also discussed. Finally, it is observed that
quantum eRects will modify the classical results here obtained
only at extraordinarily large energies.

q ARLY in 1945, much attention was focused on
the design of accelerators for the production of

very high energy electrons and other charged par-
ticles. In connection with this activity, the author
investigated in some detail the limitations to the
attainment of high energy electrons imposed by the
radiative energy loss' of the accelerated electrons.
Although the results of this work were communi-
cated to various interested persons, ' "no serious
attempt at publication' was made. However, re-
cent experiments on the radiation from the General
Electric synchrotron' have made it desirable to
publish the portion of the investigation that is
concerned with the properties of the radiation from
individual electrons, apart from the considerations
on the practical attainment of very high energies.
Accordingly, we derive various properties of the
radiation from a high energy accelerated electron;
the comparison with experiment has been given in
the paper by Elder, Langmuir, and Pollock.

I. GENERAL FORMULAS

Before launching into the general discussion, it
is well to notice an elementary derivation of the
total rate of radiation, based on Larmor's classical
formula for a slowly moving electron, and argu-
ments of relativistic invariance. The Larmor
formula for the power radiated by an electron that

is instantaneously at rest is

2 e'(dv) ' 2 e' (dp) '

3 c' & dt ) 3 m'c' E dt)

or
ds' =dt' 1/c'(dx'+ dy'—+ds'),

ds = (1 '/ tt)~dct— (I.2)

Secondly, we replace the square of the proper time
derivative of the momentum by the invariant
combination

(dp/ds)' —1/c'(dE/ds)'.

Hence, as the desired invariant generalization of
(I.1), we have
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Now, radiated energy and elapsed time transform
in the same manner under Lorentz transformations,
whence the radiated power must be an invariant.
Ke shall have succeeded in deriving a formula for
the power radiated by an electron of arbitrary
velocity if we can exhibit an invariant that reduces
to (I.1) in the rest system of the electron. To ac-
complish this, we 6rst replace the time derivative
by the derivative with respect to the invariant
proper time. The differential of proper time is
de6ned by

' See L. I. SchiR, Rev. Sci. Inst. 17, 6 (1946}.'D. Iwanenko and I. Porneranchuk, Phys. Rev. 65, 343 2 e' ( E q' (dp)' 1(dE~'
I'Edwin M. McMillan, Phys. Rev. 68, 144 (1945}. 3 m'c' (mc') L dt) c' E dt )4 John P. Blewett, Phys. Rev. 69, 87 (1946}.
~ Julian Schwinger, Phys. Rev. 70, 798 {1946}.
'Elder, Langmuir, and Pollock, Phys. Rev. 74, 52 (1948}. The conventional form of this result is obtained on
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writing

p
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and performing the indicated differentiations. Thus
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The two important limiting cases of these formu-
las are realized in the linear accelerator and the
synchrotron, or betatron. In the former, the rates
of momentum and energy change are connected by

c'p(d p/dt) =E(dE/dt),

where BB, is the electron energy in units of
1 Bev=10' ev, R,~ is the radius of the electron
orbit in meters, and bE&, is the energy radiated
per revolution in units of 1 kev =10' ev.

We shall now construct an expression for the
instantaneous power radiated by an electron mov-
ing along an arbitrary prescribed path. Our pro-
cedure will be such that by introducing various
forms for this result the following additional
physical quantities can be obtained: the angular
distribution of the radiation, the rate of radiation
into the various frequencies generated by the elec-
tron, and the angular distribution of the radiation
emitted at each of these frequencies.

The method is based on a consideration of the
rate at which the electron does work on the electro-
magnetic field,

2 e' )dpi' ' 2 e' ~dEq '
I

—
I3m'c' (dt) 3 m'c' ( dx)

(I.5)
—I j E„tdv, (I.12)

which shows that the radiated power depends only
on the external force and is independent of the
electron energy. The ratio of power lost in radia-
tion to power gained from external sources is

dE 2 e' dE/mc'
P

dt 3 mc' dx
(I.6)

since the energy changes slowly in comparison with
the vectorial momentum. Now

(&P) '
I

—oo 'p' =—p'E'
&dt's R

(I 8)

where +0 and R are the instantaneous angular
velocity and radius of curvature. Hence,

e'
t Eye

+=o~o P IR &mc')
(I.9)

for high energy electrons. It is evident that radia-
tive losses in a linear accelerator are negligible,
unless the accelerating field supplies energy of the
order mc' in a distance equal to the classical radius
of the electron. ' For the circular trajectory of an
electron in a synchrotron,

2 e' t' E q
'

t dp ~
'
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I
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which can be conveniently divided into two es-
sentially different parts on writing

Eret 2 (Eret+Esdv)+ 2(Eret Esdv) (I.13)

Here E„& and E,d are the retarded and advanced
electric field intensities generated by the electron
charge and current densities, p and j. The first part
of (I.12), derived from the symmetrical combina-
tion of E„~ and E,q, changes sign on reversing the
positive sense of time and therefore represents
reactive power. It describes the rate at which the
electron stores energy in the electromagnetic field,
an inertial effect with which we are not concerned.
However, the second part of (I.12), derived from
the antisymmetrical combination of E,.~ and E,~,
remains unchanged on reversing the positive sense
of time, and therefore represents resistive power.
Subject to one qualification, it describes the rate
of irreversible energy transfer to the electro-
magnetic field, which is the desired rate of radiation.
Included in the second part of (I.12) are terms
which have the form of the time derivative of an
acceleration dependent electron energy. The latter
is completely negligible compared with the elec-
tron kinetic energy for all realizable accelerations.
It will be a simple manner to eliminate these un-
wanted terms after evaluating the dissipative part
of (I.12). Thus, the power carried away by radia-
tion is, provisionally,

For high energy electrons moving in a circular path,
the energy radiated per revolution is

bE = (4tr/3) (e'/R) (E/mc') 4.

A useful form of this result is

with

~J EdV,

1 8
E=-', (E,.t —E.e„)= ———A —Vtt.

c Bt

(I.14)

(I.15)

hEt„= 88.5(Es. )'/R, t (I.11) The expression of I' in terms of the vector and scalar
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i & sin(&d/c)
I
r —r'
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V' j+Bp/Bt=0.

Thus,

potentials, A and p, can be simplified by employing
the charge conservation equation

f 1 BA 8p d
I' =

f~
—j ——p—dv+ —
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c at Bt dt~ X—j (r', t') dv'd t'd~. (I.24)

c
The second term of this formula is of the accelera-
tion energy type and may be discarded. Hence the
expression for the radiated power, which still in-
cludes unwanted acceleration energy terms, be-
comes

It will also prove useful to write

»n(~/c) Ir —r'
I

dQ
exp[i(&0/c)n (r —r')] (I.25)

4xp1 8AI'=, —j ———d .
c Bt c)t

(I.18)
in which dQ is an element of solid angle associated
with the direction of the unit vector n. The result-

The retarded and advanced scalar potentials can ant expressions ior @ and A:
he conveniently written as

4ret, adv(r, t)

c i—p(r', t')dv'dt', (I.19)
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where the upper sign is appropriate for the re-
tarded potential. On introducing the Fourier in-

2 x'c
tegral representation of the function t')(t):

1
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the potentials assume the form

1
(r t) ~f e&rg&t' o-

2x~

are a superposition of plane waves traveling with
the speed C.

The total radiated power, calculated from (18),
(19), and (23), is

whence

g+t(ce/~) I r—r'I

Z
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c
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fr —r'
f

(I.27)

where t')'(t) denotes the derivative of the delta

X—j(r', t')dv'dt', (I.23) I"nction. Alternatively, if the Fourier integral
c representations (I.22) and (1.24) are employed,
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1
P(t) = ——, p(r, t) p(x', t')

2m~
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c

Evidently,

1 f
P(n, t) = p(r, t) p(r', t')
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It may be inferred that

dvdv dt +du 1
X~"f t' —t+-n (.—x') !dvdv'«' (I.»)

c )
describes the power radiated per unit solid angle
in the direction n, at the time t. Similarly, (I.30) can
be written

P(~, t) = —— p(r, t) p(r', t')

where

t&0

P(t) =
~I der~ dQP(n, co, t),

0

(I.32)
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C
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f

c
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fr —r'f

represents the power radiated at the time t in a
unit angular frequency range about co. The latter
statement is correct if P(~, t) changes only slightly
in a time interval equal to the reciprocal of ~, a
condition that is adequately met in practice.

YVith the aid of (I.25), the total radiated power
can also be written

f
P(t) =

I
P(x t)P(x t )

27rc~

1 6) f

P(n, co, t) = — —
I p(x, t) p(r', t')

4 ' c~

—-j(r, t) j(r', t')
c2

1
cosa&f t' t+ —n (r——r.') !dvdv'dt' (I.33)

c )
represents the power radiated at time t into a unit
solid angle about the direction n and contained in
a unit angular frequency interval about the fre-
quency cv. This interpretation is also subject to the
adiabatic condition, that P(n, a&, t) change only
slightly in a time interval equal to the period of the
radiation.

Thus far, we have dealt with the radiation of an
arbitrary charge-current distribution. For a point
electron of charge e, located at the variable posi-
tion R(t),

Xexp ice t' —t+—n (x —r') p(x, t) = et&'(r —R(t)),
j(r, t) = ev(t) t'&(r R(t)), —(I.34)
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4m
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where v(t) =dR(t)/dt Our various . formulas can
now be simplified by performing the spatial inte-
grations. Hence

f00 (
P(t) = —,

f
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c

X (I.35)
f
R(t+r) —R(t) f
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On performing the indicated differentiations, we
obtain

P(ra, t) = ——
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in which we have placed t' —t=r.
The total power and its angular distribution can

be obtained by straightforward integration, for an
arbitrary electron trajectory. We consider, for
example, the evaluation of P(n, t) It is con. venient
to introduce the variable

e+-
dt 4~C2 ( 1

(1—nv
c )

no/1 ——
ic')

f 1
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(I.41)

for which

whence

1
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~ 00
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of which only the first term should be retained.
Replacing the velocity by v =pc'/8, we have
finally,

1
1 nv(t+ r)——

c

It is now merely necessary to integrate twice by
parts and observe that y =0 implies r =0, unless
the electron velocity exceeds that of light (as in the
Cerenkov effect). Thus
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in agreement with (I.3).
For the two extremes of linear acceleration and

circular motion, the angular distribution of the
radiated power is given by

2 sin26
P(n t) = p2(1 —P')' (I.43)

4' 2c' (1—P cos8)'

2 e' tZy'. 1
P(t) = P(n, t)dQ= )) p—' — E', —

3 m'c' &mc') c'
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P(n, t) = p'(1 —p')
4+m'c' (1—p cos8)'

sin'8 cos'8—(1—P') (I.44)
(1 —P cos8)'

The angles 8 and q are the polar angles of a coordi-
nate system in which the s axis coincides with the
instantaneous direction of motion, and the xs plane
is that of the orbital motion. It is evident that at
high speeds the direction of motion is a strongly
preferred direction of emission. As a simple measure
of this asymmetry we consider the mean value of
sin'0, defined as

necessarily depends upon the detailed motion of
the electron over a time interval that is large com-
pared with the period of radiation under considera-
tion. However, the very narrow cone of radiation
that is generated by a high energy electron sug-
gests that only a small part of the electron trajec-
tory is effective in producing the radiation ob-
served in a given direction, which also implies
that very high frequencies must be emitted. K'e
therefore consider 6rst the high frequency radiation
generated by an energetic electron, in the antici-
pation that only the instantaneous nature of the
electron's motion will be involved. Secondly, we
shall derive the entire spectrum emitted by an
electron moving with constant speed in a circular
path.

(sin'8) = I sin'OP(n, t)dQ/P(t) (I.45)
II. HIGH FREQUENCY RADIATION BY

ENERGETIC ELECTRONS

An elementary calculation yields, for linear ac-
celeration,

(' '~)=(1—p') 1 —l(1 —P)

3 (1—P')'
& 1+P 2P'&

+—
i

log —2P ——i, (I.46)
4 P' 4 1 —P 3)

and, for circular motion,

To evaluate (I.37) for E/mc'»1, it is sufFicient
to write

( R(t+ r) —R(t)
~

=
( rv(t)

+ (r'/2) V(t)+ (r&/6) anv(t)/aP
I

=(r'v'+r'v 0+(r4/4)v'
+(r4/3)v 8'v/Bt') & (II.1).

Furthermore, v v=(d/dt) ', v' may b-e placed equal
to zero since v divers negligibly from c when
E/mc'»1. In a similar manner, v 8'v/Bt'~ —V2

—c4/R'. In the latter formula R is the instan-
taneous radius of curvature. Hence

(sin'6) = (1 —P') 1+~~(1—P')

31—P'p 1+P
log -2P

IP'i 1 —P

3 (1—P')' t 1+P 2P'i-
~

log —2P ——
~

(I.47)
8 P' ( 1 —P 3)

The values of these averages, for low energy
electrons, are 4/5 and 3/5, for linear and circular
motion, respectively. Both types of motion yield
the following limiting form for high energy electrons

and

1 c'
IR(t+ ) —R(t) I= I I

——
I "I (II 2)

24 R'

2 82co f" ( 1 c'T
P(co, t) = ———

I

i
1 —P'+-

c~p E 2 R2j

c'r' q dr
Xcoscor since) Pr —

[
— (II.3)

248'j T

In writing this result, an approximation similar to
(II.2) has been employed on the velocity dependent
factor of (I.37):

(sin'8) = 1 —P' = (mc'/E)', (I.48) 1
1 —v(t) .v(t+r)—

c2

'V T T2

=1————V O' ——V 8 V/Btm
c' c' 2c'

8 = (P)& = mc'/E, E/mc'»1. (I.49)

A useful form of this result is
1cT

1—P'+ — . (II.4)
2 R'

and therefore the mean angle between the direction
of emission and that of the electron's motion is

8; =1.76/Es, „,
where 0; is the mean angle of emission in minutes
and Ep, is the electron energy in units of Bev.

The power radiated into a given frequency range
In addition, the first term of (II.2) suffices for the
evaluation of the denominator in (I.37). It is now
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convenient to write, approximately,

1 82co f ( 1 c272

P(/d, t) =——
~'

(
1 —p'+-

x c~p & 2R2)

( Q/cp ) dr
sin~ pp(1 P—)r+

24R' ) r

d7—sin2Q/r —. (I I.S)

Now

whence

3-F3/3(g) =—
~ sin 33$(x+ 33x3)—,

QO 00 dx
3-1 ~ Z3/3(r/)d3/= lim ' SinL(X+-33X3)—

I-moo J p X

dx
sin-', t(x+-'pxp)—

p X

dx
sin 3 $ (x+-',x')— (II.11)

2 p X

3 lZ3/3($) = JI x sin-3$(x+-px3)dx (II.12)
0

td iq
I
—+—IZ3/3(h) = -Z3/3($).

(dP 3))
(II.13)

2R
r =—(1 —P') ~x,

c
Hence

The approximation employed in the second term of
(II.S) is valid provided Q/))c/R, that is, if we re-
strict attention to frequencies that greatly exceed
the instantaneous angular frequency of the electron.
To justify this statement, note that the largest

Furthermore,

values of ~ that contribute to the integral in ques-
tion are r 1/Q/. Thus the neglected term is of the
order of magnitude pprpc3/R3 (c/Q/R)3«1. since

To simplify the first integral in (II.S), we write

whence

8 G)

P( t) =- —(1—P') (1+2x')
-"0

dx
X sin-', $ (x+-',x')——— (II.7)

x 2

In this formula, we have placed

oo dx

J
(1+2x') sin-',g(x+ -',x')———

0 X 2

=3-
( 2Z3/3(t) —t Z3/3(3/)d3/ )

=3 3JI Z ( )d . (II.14)

2 Q/R 2 Q/R pmc3) '
(1-p'):=-

3c 3c&E)
and employed the well-known integral

p" sinax
dx= —, a) 0.

Q x 2

(II.S) The last simplification involves the recurrence rela-
tion

d
2—Z3/3($)+Z$/3(~&) = —Zp/3(t). (II.1S)

d$

Our final result is

3~ 82( E $4CV0CO

P(Q3, t) =——
) ~

'

Zp/3(3/)d3/, (II.16)
47r R EmC2) CV,2~ ~i~.

(II.17)

related to the Airy integral' Before proceeding with the discussion of the
formula, it is advisable to check our approximations

cos—',p(x+-', x)dx=3 —EZ»3(]). (II IO) by verifying that

The approximation (II.2) can now be justified by
considering the range of variable that is of most
importance for the integral in (II.7). The essential
frequencies are such that )~1, or pp (c/R) (E/mc3) 3.

Clearly, then, the important values of x are x 1,
where the critical frequency co, is defined by

or r (R/c)(mcp/E). The series (II.7) is essentially )E
an expansion in powers of (cr/R)3 (mc3/E)3((1.
Thus the neglect of higher terms in the expansion (mc3)
is justified provided E/mc3»1. and

The integral contained in (II.7) can be recog- Q/3 =c/R.
nized as

7 G. N. Watson, Jjesse/ Functions (The Macmi11an Company,
New York, 1945), p. 188.

P(t) =
40

e2( E q4
P(/d, t)d/d = 33Q/P

R &mc3)
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or that

Q0 OG 1 Sm.

g$ &s/s(v)de=-
i P&f/3(h)dh=

~0 37 j3

This is indeed the value yielded by the formula

t't/, —v'l t'p+ v)P-'z', (g)dg=2 -'rI IrI I
(Ii.ls)E2)(2)

In virtue of the properties of the Bessel functions
of imaginary argument, the behavior of I'(co, t) is
radically different, depending upon whether cv/cv.

is large or small compared with unity. For or&(~„
it is convenient to write

3 ' 8 fE') Gd p(d

P(ca, t) =——
I

4m. R Lmc')

&/~c

X 2&2/3I I+ z$/3(v)dv —— (II.19)
E(Oq/ & 0 3l

and insert the power series expansions for small
values of the argument. Thus,

3'/'I"(-,') e'/ ~ q '
co/a&. (&1:P((o, t) =

R ((dpi

I'(3) /' ~ ) '
x 1 —

I I + , (II 2o)
2 E 2Ql~)

of which the leading term for small frequencies
varies as ~' and is independent of the electron
energy. If co/cv. ))1, we may employ the asymptotic
form for large argument in Eq. (II.16), whence

3 t 3 q
'* e'

Cd/M ))1:I (Q3, t) =
4 (2~)

( E $
4

/A/g // co ) ~

, I
—

I

—
I

c "'"
Emc'] ~, E ~,)

55 ore

X 1+——+
72 or

Therefore, the energy radiated into a unit frequency
interval steadily increases with frequency until
co/cv. 1, after which there is a rapid decrease. '
Since the power radiated at frequencies not in
excess of or, is independent of E, but varies as
or&, the total power should vary as or,'", which is
indeed proportional to (E/mc-")'.

Associated with the critical frequency is a. wave-

8 These qualitative results have also been obtained by L.
Arzimovich and I. Pomeranchuk, J. Phys. USSR 9, 267
(1945).

length
X,= (4s/3) R(mc'/E)' (II.22)

whence

r —R(t) v(t) q
dt'=I 1— Idt = (1 —P cos8)dt.

Ir —R(t)
I

c )
Thus the time interval during which the pulse is
received is of the order of magnitude

At'~(1 P+ '1$') Dt ~(—1 P'-) At (R/c) (m—c'/E)'

and the Fourier spectrum of the pulse will contain
all frequencies up to a maximum of the order of
magnitude

1/At' (c/R) (E/mc')'

in agreement with our more precise considerations.
The combined spectral and angular distribution

for a high energy electron can be obtained in a
similar way. We write, approximately,

8 or

P(n, co, t) =-
4m' c~

1 c'r'q /' ( n vq
xI ' tt'+ —Icos~I-I 1—

2 R') ( E c

in fr 8'v/
7' ——n1

6
2 c C

Bt'
r' Idr. (II.24)

It will be convenient to replace the polar angles 6
and q by the angles f and x. The former designates

which may be written, for practical purposes, as

Ij., ~ =5.59(R „/(Es, )'). (II.23)

Here R„„~and Eg,„have the meanings previously
attributed to them, while Xc, p denotes the critical
wave-length in units of 1A =10 cm. Evidently an
electron accelerator will be a source of high fre-
quency radiation. It is desirable to have a simply
physical explanation for the very high frequencies
generated by an energetic electron. We shall base
such an explanation upon the angular distribution
properties of the radiation. Since the mean angle
between the direction of motion and that of the
radiation is b=mc2/E, the time interva. l during
which radiation is emitted toward the observer is

~t-(R/c) 8

being the time required for the direction of motion
to move through the angle 8. However, the time
interval for reception of the pulse by the observer
differs from At, in virtue of the Doppler effect.
The time of reception, at the point r, of a signal
generated at the time t and the point R(t) is

Ir —R(t)
I
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Hence,

sin8 siny =sing,
sin8 cosy =cosf sinx,

cos8 =cosf cosy.
(I1.25)

the angle between the direction of emission and the
instantaneous orbital plane, while x denotes the
angle, projected onto the orbital plane, between the
direction of emission and direction of motion. The
connection between the two sets of spherical co-
ordinates is

It should now be remarked that only the dis-
tribution in the angle P is of interest, that in the
angle p being essentially unobservable in practice.
Accordingly, we may integrate (II.29) with respect
to x to obtain P(P, &o, t), the power emitted per
unit angle relative to the orbital plane, and per
unit angular frequency, at the time t. The introduc-
tion of the variables

x=(1—P'+P) 'x

O'V C c
=—slnd cosy ——g,

c R R
yields

C7

y=(1 P'—+0') '
R

(II.30)

n v
1 — = 1 —P cos8~-', (I —P'+P+x'),

n (a'v jBP) c2
—v (8'v(8t')

C C2 R'

r(Ir.26)
P(P, o/, t) = — ——(1 —P'+P)

4' R (dp j
( 1 P2+$2

&& l
1 —p'+ —(x'+y'+2xy) l

E. )2

in which approximations have been introduced
based on the small angle between the directions of
emission and motion. Expressed in these angular
coordinates, (II.24) becomes

g2 ~2 Qo

P(n, oo, t) =-
4m'c~ „ whence

GOR

cos (1 —p'+p) &(x+-',x'
2G

+y+-,'y') dxdy, (I1.31)

(
Xl 1 —p'+ —

l
coso/

2 R2 i

~~ (1—Po+P+ xo) r(,
E.

cx c'r )——r'+
l
d r (11.27).

2R 6R')

whence
82

R
~~7+ X~

C

(II.28)

P(n, o/, t) =-
4V2 C~ „

1 c'r' c
Xl 1 P'+ox'+- —+—xr l2R' R

To bring this integral into the standard Airy in-
tegral form, it is necessary to eliminate the term in
7' that occurs in the argument of the trigonometric
function. Ke achieve this by the following substi-
tution for v. ..

on employing (II.10), (II.12), and the identity

(1+x') cos-,'((x+-,'x')dx
0

2

3h" o

d sin-,' $(x+-,'x') =0. (II.33)

This result can also be written

3 eo ( oo ) '-

P(4 ~. ~)=
4~2 R E~,)

xl ll 1+(
Emc') 4 Emc' )

g2 ~2

P(p, (u, t,) = ——(1 —p'+p)'
3' R Qlp

(&R
)( Zo/3 l (1—p'+p)& l

E 3c )
(ooR

+ X1/o l (1—P'+rP) &
l

(II.32)
1 —p'+p E 3c )

cos~l -', (1—P'+P).+
E. 6R2

R R
+—(1—P'+P)x+ —x' ld' (rr 29)

2c 6c )

&./*'(~)+

( Q q
2

(mc2 &

&i/o'(0), (I I-34)
( Q q2

I+I
4mc'
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where

I 1+I
2or, 4 Emc' ) )

The desired average power spectrum is given by

(II.35)
P(or) =—t P(cp, t)dt

TJ.
Evidently the spectrum of the radiation emitted at
the angle P extends up to a maximum frequency

( ( E--
I 1+I

&mcp ) )

which decreases rapidly with increasing angle if
P &mc'/E. 'I'his again implies that appreciable
radiation occurs only at angles P mc'/E, which is
made evident by the angular distribution function
for the radiation, irrespective of frequency:

P(rI/, t) =J" P(rtr, or, t)dcp
0

eP( E )5( (E )2) —P/2

II 1+I
R Icmc'r/ 4 (mc' J r/

3r e' 1 /

r (E(t))'
4rr R T&p ( mc'J

C00M

X Kp/ p(r/) dr/ (I I 41)
or~ (t) 4 (a/cue(cr

t
r=or /or, (t) =sin —'——.

2 T
(II.42)

Kith the aid of the diA'erential relation

dt 2 dT
(r& —1)-&—-,

T 3Ã 7'

It is convenient to introduce as a new variable

( E )2

X —+-
i6 i6

(II.41) now reads

&mc )
(II 36) 3& e' t' E„q ' cdpor

P(~) =
2% R imc ) or~

obtained from (II.34) with the aid of the integral Kp/r/(r/)dr/. (II.43)

K„'(x)x'dx =—
0 4 cos7rp,

(II.37) The integrals can be simplified with an integration
by parts, according to

3 ~I d(r& —1)r t

1 ~ (ce/te ) &

or /' f M

(.t —1)~K»pI —.Id. .
E orrrr )

3' e'(E &corp f or)
P(or) = —

I I FI —
I (II.44)—

2m' R Emc') or (or )

This result agrees, of course, with tl".~t computed
from P(n, t) by integrating with respect to x and
introducing the approximations appropriate to the
situation under discussion.

The synchrotron spectral measurements reported
in reference 6 pertain, not to the instantaneous
power spectrum individually emitted by the ac-
celerated electrons, but rather to the spectrum Therefore
averaged over an acceleration cycle. For the high
energies under consideration, the electron energy
varies linearly with the magnetic field. If the latter
increases sinusoidally to its maximum value in an
interval 1, or

7r t
E(t) =E sin ——,

2 T
(II.38)

3'82 E (cup
P(or) =—— FI —I,

rr' R mc' &or ) (II.45)

where E is the maximum electron energy. Corre- where
spondingly,

7!

or, (t) = cd sin' ——,
2 T' (II.39)

F(x) =x' (r~ —1) Kp/rr(xr)dr. (II.46)

with
= (3/2)orp(E„/mc')' ~

It can be verified that the total time average power,

(II.40) computed from (II.44) as Jj&"P(cd)dor, agrees with
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the more direct calculation: (II.53) are

e' ) F.„y 4 1 t' x t
P = —',(oo—

( ~

—
il sin' — d—t

Z Lmc')

e2(g y4

R EmC2)

(I1.47)

3x~ t 1' ~ K2~g($)d(+~x ~ +Kg)3($)dg
0 Jp

3
= ——r(-', )r(-', )x&+2—4i'r(-', ) r(7/6)x,

2g

The asymptotic form of F(x) for x»1 can be
computed in a straightforward manner from the
known behavior of Es/3 for large argument, with
the result:

( 7 1
»~1:F(x) --3-:e-*( I+—-+"

) (II.48)
18x i

The first term in the expansion of F(x) for small x
is obtained from the leading term in the expansion
of K5]3.

x«1:F(x) =2tr(5/3)x'

XJt (T 1)&r—'"dr = 2 4 I'(-', )x&. (II.49)
1

The corresponding average power spectrum,

agrees with the first term of (II.20), the energy
independent low frequency instantaneous power
spectrum. To obtain further terms in an expansion,
we observe that

d 00—(x lF(x)) = —x'I' r(r& 1)&%2~3(—xT)dT' (II.50)

since

whence

x«1:F(x) =2-'~r (-,') x'*

3 r(-', ) 1 r(7/6)x1- g)+ X+ a ~ ~

24.& I'(-,') 27r' I'(-', )
(II.54)

R
Z/mc'«(

&tt, /mc)
(II.55)

For a given radius, say R=102 cm, this sets an
upper limit to the electron energy, of the order of
10"ev. However, it must be remembered that in a
magnetic device, the radius of the orbit is related to
the maximum particle energy, as restricted by the
strength of attainable magnetic fields:

8= eHR.

The approximate evaluations of F(x) for large and
small argument furnish a reasonable qualitative
picture of the function. To obtain the complete
curve, resort must be had to numerical integration.
The result may be seen in Fig. 1 of reference 6,
which is essentially a plot of F(x).

We shall conclude this section by briefly examin-
ing under what conditions quantum phenomena
will invalidate the classical considerations we have
presented. This will occur when the momentum
of the emitted quantum is comparable with the
electron momentum. Hence, for the validity of our
classical treatment, it is required that

kro(&E, co~co„
or

(x l3+5t3(x)) ——x I +2t3(x)
dx

(I1.51)
The limitation (II.55) should thus be written

By an appropriate change in variable, this becomes mc

mc' (eh,/mc)II
(II.56)

d. p QO—(x iF(x)) = —x '
~

$($'* x')&Xgi3($—)d), (II.52)
dx

and an integration with respect to x, in conjunction
with (II.49), yields

x &F(x) —2—4.r(-', )

J~ rt 'drtJ" h(k' ~')'&w3(t)dk (II 53)
0

For small x, the leading terms on the right side of

which implies that, for H = 104 gauss, classical
theory will be adequate if the particle energy does
not exceed 10"ev.

III. RADIATION BY AN ELECTRON IN
UNIFORM CIRCULAR MOTION

In order to obtain the complete spectrum radiated
by an accelerated electron, it is necessary to specify
the entire trajectory. Accordingly, we shall apply
our general method to calculate the radiation
properties of an electron moving with constant
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speed in a circular path. Since the motion is
periodic, the spectrum will consist of harmonics of
the rotational angular frequency ppp =s/R. We shall
obtain the total power radiated into each harmonic
as well as its angular distribution. '

The quantities entering into the formula (1.37)
for the spectral distribution are easily evaluated
for circular motion. Thus

into the nth harmonic. The latter can be rewritten
as

~2- ]
P„= —neo p

—(1 —P'-)—'

R 2x~-

sin(2nP siny/2)
X cosn yd y

sin y/2

v(/) v($+ r) = v coscopr, (I I I.1) +2P'—,I sin(2nP sin y/2)
2m~ —~

&07
~

R(t+ r) —R(t)
~

= 2R sin (III.2)
&(siny/2 cosnydy (III.8)

Furthermore, the periodic nature of the motion can
be exploited by writing

M07" =p+ 2'"P) (III.3)

and replacing the integration with respect to
from —~ to + ~ by one with respect to y from

to +m, combined with a summation with
respect to the integer k from —~ to ~. Thus,

Both integrals can be expressed in terms of Bessel
functions, for the operations of integration and
diAerentiation with respect to s, applied to the
equation

cos(z siny/2) cosnydy= Jz„(s), (III.9)
2x~-

yield

P(co) = ———g cos2pr —k
Mp

jr

(1—P' cosy) cos—y
Mp

sin y/2

and

1 J. sin(s siny/2)

2~~-.
cosnydy

z

J,„(x)dx, (III.10)
0

sing(2cpR/c) s~n(y/2) ]
2R siny 2 2. .

However, according to the Poisson sum formula,
Therefore

Xsiny/2 cosnydy= —J.„'(s). (III.11)

QO CO '~ ( Gl

cos2pr —k= P 8~
——n I, (111.5)

p=—ao ~p n= m(~p )—
in which n ranges over all integral values. Since ~ is
restricted to be positive, we obtain

P„=n(up 2P' Jp.'(2—nP)
R

2nP
—(1 —P'-) ~~ J&.(x)dx (I I I.12)

0

with

P(co) = Q 5(M neap)P. —
n=I

(II I.6) If the electron velocity is small compared to that
of light, the dominant term in I'„ is

g2

p2

P = nppp ——! —(1 —p' cosy) cosny
R 2m~ —~

sin(2nP siny/2)
dy. (III.7)

sin y/2

The discrete nature of the spectrum is now ex-
hibited, with P„representing the power radiated

P«1 P =2(op—(n+1) P'"+' (III.13)
R (2n+1)!

which makes it evident that appreciable power is
radiated only into the fundamental frequency.
For very large electron energies, 1 —P2&&1, and we
may place p equal to unity provided n is small com-
pared with a critical harmonic number n, (1 —P')
Under these circumstances, we have

'See G. A. Schott, Electromagnetic Radiation (Cambridge
University Press, Cambridge, 1912), pp. 109, 110.

g2

P.= 2n~ p J„'(2n)—
R

(I II.14)
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e' n'copP ( 1

4m 2 c E, c'i
1 —-v(t) v(t+r)

)
P.(n) =—

3I/6

Jp „'(2n) — I'(-', )n—
&,

2~
(III.15)

1
Xcosn~p) r n—(R(t+r) —R(t)) )dr, (III.22)

)c
with an error that is only 15 percent for m =1, and
5 percent for n =5. Hence

in which the integration is extended over one
traversal of the orbit. This quantity still involves
the arbitrary initial phase of the electron in its
circular path. An average with respect to t is
equivalent to averaging over the initial phase.
Further, the integrations with respect to t and
t+ 1 = t' can be performed independently, which
brings (III.22) into the form

31/6 g2

1 —P «1, n«n. :P„= I"(p)~p—n~. (III.16)
R

Evidently the radiated power increases with in-
creasing frequency. To find the behavior of I'„ for
very high frequencies, we must replace the Bessel
functions in (III.12) by their asymptotic forms for
large and comparable order and argument. " One
thus obtains

e ncop ( 1
P„(n) = —

i
1 — v(t) v(t—')

i

Sm-' c E c'

The derivative of the Bessel function with equal motion. Here
order and argument can be approximated by its
asymptotic form p

with

whence

1 t'3q~ tnt
I ltp/pI

3&pr I 2n. ) (n, )

n. ='p(1-P') '

3& e2 1 n
P„= cup ———Ep(p(v)dv,

4x R 1 —P n'~n/n

2nP 00

n»1: t Jp„(x)dx= " Z)(p(rt)dv,
3&m~. /,

(111.17)

(I I 1.18)

(III.19)

(
Xexp incopj t' t n- ——

c

(R(t') —R(t)) (
dtdt', (III.23)

in which it is understood that the real part is to be
taken. We may now conveniently introduce a
special coordinate system in which the xy plane is
that of the orbit, and the unit vector n lies in the
xs plane, at an angle f relative to the orbital plane.
In terms of the polar coordinates y and y' for the
points R(t) and R(t'), we have

on employing the relation (II.15). The discrete
spectrum is enectively a continuum if n))i. The
power radiated into a unit angular frequency
interval is

n R(t) = R cosP cosy, n R(t') =R cosP cosy'

1
v(t) v(t') = p'- —cos(y —y'),

c2

1
P(~) =P-i-p—

CO 0

(II I.20)
and

copdt =dy, copdt =dp,

which yields an expression for P(a&) that is identical
with (II.16), the more general result obtained for a
high energy electron traversing an arbitrary tra-
jectory.

The combined spectral and angular distribution
function, P(n, a&), also assumes the form charac-
teristic of a discrete harmonic spectrum:

whence

P-(4) =
82 S Mp2

X)I (p cosy cos y
0

P(n, (o) = P b((o —na&p)P. (n)
n=I

(I I I.21)
+p' siny siny' —1)

XexpLinp cosp cosy iny5—
on introducing the periodic nature of the electronic

'0 Reference 7, p. 260."Reference tr', p. 248.

Xexp[ inP costt c—osy'+iny'5dydy'. (111.24)

The integrals can be expressed in terms of Bessel
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functions. From the well-known integral

~'2x'

exp[iz cosy —iny]dy =i"J (z), (III.25)
2Ã

we derive

described by
e 's

1 —P'« I:P.(0) = ooo——(J„'(n))'
R 2~

6& e'-

(I'(-', ))'ooo—n&, (II I.29)
4x' R

27t

exp[zz cosy —Zny]

Xcosyd y = i" 'J'„'(z),

1

exp[iz cosy —zny~
2x'~ I)

1 —p'«1, p«1, n)) 1:
1J.(nP cosP) = (1 —P'+P) ~Xi(o(k),

3k'
Xsinydy= —i'(n z) J„(z) (III.27)

provided n((n, . Evidently the power radiated in
this direction increases with increasing frequency.

(III 26) To find the behavior at very high frequencies,
without restriction to /=0, we must employ the
asymptotic forms of the Bessel functions for large
order and argument:

by differentiation with respect to z and integration
by party, respectively. Therefore,

e"
P„(P)= ooo—P'"—(J„'(nP cosP))'-

R 2x

1J '(nP cosP) = (1 —P'-+P) Kopo($), (I I I.30)
3&m

where

(J,(np cosp) ~
'-'

+sin'P
( ), (I I I.28)

p cosp ) We obtain

(I II.31)

which yields the power radiated, in the nth har-
monic, into a unit solid angle at the angle f with
the orbital plane.

For P cosg«1, the leading term in (III.28) is

(nP/2) o ~

—-ooo—P— (cosP)-'" '(1+sin'P),
2ir R [(n —1)!]'-

which shows that the po~er radiated decreases
rapidly with increasing harmonic number in either
of two situations; emission by a low energy electron
in any direction, or emission by a high energy elec-
tron in a direction almost normal to the orbital
plane. On the other hand, the power radiated in the
orbital plane by a very high energy electron is

On replacing this quantity by

P(0' oo) = (2orloio)P i o(4') (I I I.33)

the power radiated into a unit angular frequency
range and a unit angular interval (rather than unit
solid angle), we encounter a formula that is identical
with (II.32), or (II.34), the more general result
obtained for a high energy electron traversing an
arbitrary trajectory.


