

IEn: 03/17/2017		APS Meeting - no class		
23 Mon: 03/20/2017	Chap. 9	Sources of Radiation	#17	03/24/2017
24 Wed: 03/22/2017	Chap. 9 & 10	Radiation and Scattering	-	
25 Fn: 03/24/2017	Chap. 9 & 10	Radiation and Scattering	#18	03/27/2017
26 Mon: 03/27/2017	Chap 11	Special relativity	#19	03/31/2017
27 Wed: 03/29/2017	Chap. 11	Special relativity		
28 Fri: 03/31/2017	Chap. 11	Special relativity	#20	04/3/2017
29 Mon: 04/03/2017	Chap. 14	Radiation from moving charges	#21	04/5/2017
30 Wed: 04/05/2017	Transferra			
31 Fri: 04/07/2017				
32 Mon: 04/10/2017				
33 Wed: 04/12/2017				
Fn: 04/14/2017		Good Friday Holiday no class		
34 Mon: 04/17/2017			13	
35 Wed; 04/19/2017				
36 Fn: 04/21/2017				
Mon: 04/24/2017		Presentations I		
Wed: 04/26/2017		Presentations II		

Radiation distribution in the relativistic case $\frac{dP}{d\Omega} = \mathbf{S} \cdot \hat{\mathbf{R}} R^2 = \frac{q^2}{4\pi c} \frac{\left|\hat{\mathbf{R}} \times \left[(\hat{\mathbf{R}} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}} \right]^2}{\left(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}} \right)^6} \right|_{t_r = t - R/c}$ This expression gives us the energy per unit field time *t*. We are often interested in the power per unit retarded time *t_t = t - R/c*: $\frac{dP(t)}{d\Omega} = \frac{dP_r(t_r)}{d\Omega} \frac{dt_r}{dt} \qquad \frac{dt}{dt_r} = 1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}}$ $\frac{dP_r(t_r)}{d\Omega} = \frac{q^2}{4\pi c} \frac{\left| \hat{\mathbf{R}} \times \left[(\hat{\mathbf{R}} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}} \right]^2}{\left(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}} \right)^5} \right|_{t_r = t - R/c}$ 2000

Spectral composition of electromagnetic radiation
Previously we determined the power distribution from
a charged particle:

$$\frac{dP(t)}{d\Omega} = \mathbf{S} \cdot \hat{\mathbf{R}}R^2 = \frac{q^2}{4\pi c} \frac{|\hat{\mathbf{R}} \times [(\hat{\mathbf{R}} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]^2}{(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}})^6} \Big|_{t_r = t - R/c}$$

$$= |\mathbf{a}(t)|^2$$
where $\mathbf{a}(t) = \sqrt{\frac{q^2}{4\pi c}} \frac{|\hat{\mathbf{R}} \times [(\hat{\mathbf{R}} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}})^3} \Big|_{t_r = t - R/c}$
Time integrated power per solid angle :

$$\frac{dW}{d\Omega} = \int_{-\infty}^{\infty} dt \frac{dP(t)}{d\Omega} = \int_{-\infty}^{\infty} dt |\mathbf{a}(t)|^2 = \int_{-\infty}^{\infty} d\omega |\tilde{\mathbf{a}}(\omega)|^2$$
PHY 712 Spring 2017 - Lecture 29

Example – radiation from a collinear acceleration burst	
$\frac{\partial^2 I}{\partial \omega \partial \Omega} = \frac{q^2}{4\pi^2 c} \left \int_{-\infty}^{\infty} dt_r \frac{\left \hat{\mathbf{r}} \times \left[(\hat{\mathbf{r}} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}} \right] \right }{\left(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{r}} \right)^2} \right _{t_r = t - R/c} e^{i\omega (t_r - \hat{\mathbf{r}} \cdot \mathbf{R}_q(t_r)/c)}$	
Suppose that $\dot{\boldsymbol{\beta}} = \begin{cases} \hat{\boldsymbol{\beta}} \Delta \boldsymbol{\nu} & 0 < t_r < \tau \\ c\tau & 0 & \text{otherwise} \end{cases}$	
$\frac{\partial^2 I}{\partial \omega \partial \Omega} = \frac{q^2}{4\pi^2 c^3} \left \frac{\left \hat{\mathbf{r}} \times \left[\hat{\mathbf{r}} \times \hat{\boldsymbol{\beta}} \right] \right \Delta v}{\left(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{r}} \right)^2 \tau} \right _0^{\tau} dt_r e^{i\omega(t_r - \hat{\mathbf{r}} \cdot \boldsymbol{\beta} t_r)} \right ^2 \text{Let } \boldsymbol{\beta} \cdot \hat{\mathbf{r}} = \beta \cos \theta$	1
$\frac{\partial^2 I}{\partial \omega \partial \Omega} = \frac{q^2}{4\pi^2 c^3} \left(\frac{\Delta v \sin \theta}{\left(1 - \beta \cos \theta\right)^2} \frac{\sin(\omega \tau (1 - \beta \cos \theta) / 2)}{(\omega \tau (1 - \beta \cos \theta) / 2)} \right)^2$	

Spectral composition of electromagnetic radiation -- continued

Alternative expression --

It can be shown that:

$$\frac{\hat{\mathbf{r}} \times \left[\left(\hat{\mathbf{r}} - \boldsymbol{\beta} \right) \times \dot{\boldsymbol{\beta}} \right]}{\left(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{r}} \right)^2} = \frac{d}{dt_r} \left(\frac{\hat{\mathbf{r}} \times \left(\hat{\mathbf{r}} \times \boldsymbol{\beta} \right)}{\left(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{r}} \right)} \right)$$

Integration by parts and assumptions about the integration limit behavior shows that the spectral intensity depends on the following integral:

27

$$\frac{\partial^{2} I}{\partial \omega \partial \Omega} = \frac{q^{2} \omega^{2}}{4\pi^{2} c} \left| \int_{-\infty}^{\infty} dt_{r} \left[\hat{\mathbf{r}} \times \left(\hat{\mathbf{r}} \times \boldsymbol{\beta}(t_{r}) \right) \right] e^{i\omega(t_{r} - \hat{\mathbf{r}} \cdot \mathbf{R}_{q}(t_{r})/c)} \right|^{2}$$
04/03/2017 PHY 712 Spring 2017 - Lecture 29

9