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The effective-mass-approximation differential equations appropriate for impurities in a graphite
host are constructed and are used to solve self-consistently for the screening response surrounding a
single intercalant atom. The screening cloud is found to have a very slow algebraic decay with a

0

characteristic length of 3.8 A in the case studied. This rather long length is due to both the semime-

tallic and the two-dimensional character of graphite. A Thomas-Fermi description of screening is
found to be adequate, but a linear-response theory is not. From these results we conclude that the
transferred charge in alkali-metal —graphite intercalation compounds is distributed nearly homo-

geneously on a carbon plane. %e discuss recent theoretical and experimental work in light of these
results.

I. INTRODUCTION

The formation of graphite intercalation coinpounds is
believed always to be accompanied by a charge transfer to
or from the carbon host. An understanding of the distri-
bution of this excess charge is intimately connected with
the understanding of a variety of important physical prop-
erties of these compounds: electrical conductivity, the ex-
istence of thermodynamically stable staged phases, the
dynamics of compound formation, and ionic mobilities.
In several intercalation compounds (e.g. , AsF&-intercalated
graphite) a chemical disproportionation associated with a
strong in-plane inhomogeneity in the transferred charge is
believed to be an important driving force in their stabiliza-
tion in fact, this disproportionation has been speculated
to drive a charge-density wave in the transferred charge.
The in-plane structure of the excess charge in the simpler
alkali-metal —graphite intercalation compounds has not
been firmly established; some experimental studies sug-
gest that this charge is strongly localized on the C atoms
nearest the intercalant, while others support the point of
view that the transferred charge is delocalized and hence
quite homogeneous.

In this paper we present a new theoretical approach
which is well adapted to the calculation of in-plane charge
distributions in graphite intercalation compounds. Our
approach centers on the use of the effective-mass approxi-
mation for the graphite electrons. While an effective-
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FIG. 1. Model geometry used in the present work: a single,
ionized impurity a distance zo above an isolated two-dimensional
graphite plane.

mass description of the graphite energy bands has been
available for some time, it has not previously been ap-
plied to the study of electron dynamics in the vicinity of
an impurity. The resulting effective-mass-approximation
differential equations turn out to be quite different from
those for other semimetals. While they bear some resem-
blance to the multiband equations appropriate for accep-
tors in semiconductors, the symmetry of the present case
allows a dramatic simplification which makes the compu-
tation of the screening charge quite straightforward. We
find that in the dilute limit (see Fig. 1) a typical alkali-
metal donor creates a screening charge which is quite long
ranged, decaying algebraically with an effective screening
length of about 3.8 A. This is a direct consequence of
the reduced dimensionality of the graphite host, and of
the low density of states near the Fermi energy. In addi-
tion, we find that the screening is highly nonlinear, being
strongly dependent on the valence of the intercalant; in
fact, we will show that there is no regime in which a
linear-response theory is applicable. %e also compare our
results with the screening described by Thomas-Fermi
theory. This approach, which has been successfully used
to predict the layer-averaged excess charge density in
higher-stage compounds, compares favorably with our
effective-mass-approximation results in the calculation of
in-plane screening. The effective-mass theory is superior
to the Thomas-Fermi theory, however, in that it also pro-
vides information about the eigenstates in the presence of
a defect, which should, for example, be useful in future
spectroscopic studies. At the same time, the effective-
mass approach avoids the excessive computational effort
required for a full quantum-mechanical calculation, and
is easier to interpret. We believe that the model presented
here should thus be applicable to a variety of problems in
the electronic structure of intercalation compounds in the
future.

The remainder of this paper is organized as follows.
Section II develops the formalism of the effective-mass
calculation, with a discussion of the construction of a
self-consistent screening solution. Section III presents the
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results of both the effective-mass and the Thomas-Fermi
models for a single isolated intercalant in the vicinity of a
graphite plane as shown in Fig. 1. Section IV discusses
our results in light of several recent experiments on C core
spectroscopies in alkali-metal —intercalated graphite com-
pounds. We also mention the implications of the present
work for our previous density-functional studies of bind-
ing in these compounds. The Appendix develops some
mathematical details of the asymptotic decay of the
screening charge both in the effective-mass theory and in
the Thomas-Fermi model.

II. THEORY

We have chosen to study the screening of a single inter-
calant within a graphite host with effective-mass theory. '

This theory is valid when (i) the major influence of the
foreign species on the electronic spectrum occurs near the
Fermi level Ez, and (ii) the resulting disturbance of the
host eigenstates is smoothly varying in space, with a
length scale much greater than that of the unit cell. The
first condition implies that no new chemical bonds are
formed between the intercalant and host, and that there
are no filled intercalant states. We believe that several in-
tercalants in graphite, in particular the alkali metals, satis-
fy these conditions. The application of effective-mass
theory is slightly different than for the classic semicon-
ductor cases since graphite is a zero-band-gap host; thus
the effect on the valence and conduction bands must be
considered simultaneously and on the same footing. For
this reason we will present the construction of the
effective-mass-approximation equations in some detail.

As shown in Fig. 1, we take a two-dimensional (2D) ap-
proximation for the graphite host. Within this approxi-
mation the host-energy-band structure is quite simple.
Figure 2 shows this structure (after Painter and Ellis" ) for
the p bands, i.e., states which are odd under basal plane
reflection. The valence and conduction bands touch only
at the K point in the Brillouin zone; the effective-mass ex-
pansion will be based upon the two degenerate Bloch
eigenstates g&(K, r) and gz(K, r) at this wave vector. The
amplitudes of these two eigenstates are shown in Fig. 3 for
a minimal tight-binding model (one p orbital per C
atom); as shown, we have chosen these eigenstates to lie
entirely on one C sublattice or the other, although any ro-
tation in the twofold degenerate subspace is also possible.

o
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FIG. 2. Energy-band structure of the bands of a two-

dimensional graphite layer (Ref. 11). The Brillouin zone is
shown above, and the model Pc. p energy bands which form the
basis of our effective-mass study are shown as dashed lines.

I ~2~=e
FIG. 3. Two degenerate eigenstates which provide the basis

set for the Pc. p trial wave function. The coefficients for a one-
orbital description of these eigenstates are shown. They are the
two Bloch functions at E=0 at the K point (see Fig. 2).

When the defect (i.e., intercalant) potential is zero, the
effective-mass expansion is equivalent to the a"p expan-
sion of the graphite energy bands about K. We will
present the ~.p results both to introduce the type of
wave-function expansion to be used and to illustrate the
approximations which are implicitly made to the ~-band
structure of Fig. 2. In a'p theory we approximate the
wave function at wave vector k =K+ ~ by"

f(k, r)=f~(a)e'"'"Pf(K, r)+fz(v)e'" '$2(K, r) .

Inserting g into the Schrodinger equation, keeping terms
of order a, and taking EI Ogives the sec——ular equation,

P 11 P12 fi(&) fi(&)
K' =E(a )

p» p» f~(~) fz(~)
(2)

Here p;J—:f g& (K, r ) pgj(K, r )d r. It can be shown
from group-theoretic arguments (and we can verify direct-
ly within the one-orbital tight-binding model) that the
momentum matrix may be written in the form

0 x —iy

x+I'y 0
(3)

x and y are basal-plane unit vectors, and p is a number re-
lated to the bandwidth (see below). With the use of Eq. (3)
(2) is very easily diagonalized to give

«~) =+P
I
~

I
(4)

where P=(him)p. Thus the essence of the s p approxi-
mation (and also of the effective-mass theory) is to replace
the graphite bands by conical dispersions at Ez (see Fig.
3).

When an external circularly symmetric potential U(r) is
imposed, translational symmetry is broken and the eigen-
functions can no longer be labeled by ~. This requires a
slight generalization of the trial wave function (1),

g(r)= f de f,(s) e'"'g~(K, r)

+ I dv fp(z) e'"''$2(K, r) .

Inserting this trial wave function into the Schrodinger
equation leads to an integral equation
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I'
K~ + l KOy

f1(ic ') f 1(a )
+ f dic UI(ic' —ic)

f2(ic') fz(ic
(6)

r

UI(q)= f dzp(z)U(q, z)= f dzp(z) f dqe 'q 'U(&)

Uz is the 2D Fourier transforin of the defect potential U(r), averaged over the Ir charge density profile p(z). In arriving
at Eq. (6) we have made the standard approximation of effective-mass theory' ' that the defect potential is short ranged
in q space, i.e., Uz(G) =0, where G is the shortest nonzero reciprocal-lattice vector of the graphite plane. In real space
this implies that U(r) varies smoothly from one unit cell to the next; this will be verified below. The short-range charac-
ter of Uz in reciprocal space also permits us to assume that there is no "intervalley scattering" between equivalent E
points in the graphite Brillouin zone.

To complete the derivation, we convert Eq. (6) from an integral to a differential equation by Fourier transformation in

c)

. c)x c)y

i)y Fl(r)
= E UI r—

I

From (5), the trial wave function is now expressed as

P( r )=EI ( r )Q I(E,r )+FI ( r )gz(E, r ),
i.e., as smoothly varying envelope functions F~(r) multi-
plying graphite Bloch functions. Note that this trial func-
tion is incapable of describing covalent bonding between
the defect and host, nor can it describe an eigenstate locat-
ed on the defect; however, it is well adapted to describe
ccrtalll llltcl'calatloil systcIIIS (c.g. , I I-Intercalated gl'R-

phite) in which charge transfer is complete and host-
defect interaction is weak. In what follows we will make
a sheet approximation to the graphite plane and take
p(z)=5(z). No essential modifications are required to re-
lax this assumption.

We will rely on the solutions of Eq. (7) for a description
of graphite electron dynamics in the vicinity of an impuri-
ty. Wc cail sllllpllfy thcsc solutions RIld galll nlslgllt lllto
their behavior by exploring some of the mathematical
properties of the differential equation (7). First we rewrite
lt 111 R CRIlollical for111,

The primary importance of this identification with the
Dirac equation is that it immediately permits us to con-
struct the azimuthal parts of the spinor wave function.
%'e start with the observation that the operator,

1
'xPy —3'Px+ 2

J,=Ig+ —,g g
——

0 1

XPy 3'Px —
2

i~ra(r—)e' c '

~2g(&)ei(m+ 1)5

commutes with the Hamiltonian of Eq. (8) if U(r) has cir-
cular symmetry, which we assume. J, is of course formal-
ly identical to the total angular momentum in a Dirac sys-
tem, although it is not directly related to the real angular
momentum of the graphite eigenstates. The eigenvalues
of J, are half-integer and doubly degenerate, with the
eigenspinors of j=m+ —, given by (e' @,0) and
(0, e'~+'i ) . The eigenspinor of Eq. (8) with azimuthal
quantum number j must therefore be some combination of
these two:

—o"V + UI(r) EW r )=0 . —
1

(8) (the prefactors are arbitrary and are chosen for later con-
venience). Substitution of (9) into (8) leads to coupled or-
dinary differential equations for a(r) and b(r) (Ref. 16):

Here IT 7 represents the two-dimensional dot product
o'„(c)/c)x)+o'~(c)lc)y), where cr„and o~ are conventional
2X2 Pauli matrices. '" Since the Pauli matrices anticom-
mute, Eq. (8) is algebraically identical to a two-
dimensional Dirac equation, where the two-component
"spinor" wave function 4 does not represent "spin up"
and "spin down, " but rather "graphite sublattice I" and
"graphite sublattice 2." The effective "speed of light" in
Eq. (8) is proportional to Uz which we have chosen to
match the energy-band dispersion of graphite near E+
(Ref. 11) and has a value P=lvz 5.39 CVA. A——lso, for
the DIrac effective mass in (8) m =0, since the two bands
touch.

E UI(r)—
b(r),

db(r) m+1 b(r)= a(r) .
dr z I'

(10)

Equations (10) lend themselves to a very straightfor-
ward numerical solution. Because the spectrum has no
gap, i e , m*=0, (10) .ha. s no bound states and solutions
match onto continuum states at all energies. These con-
tinuum solutions are simple phase-shifted free-particle
solutions, which are ordinary Bessel functions:
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aj.(r~oo)=C cos5~ J
P

—sin5& X P

bI(r~oo)=+C cos5J J +i —sin51% +, P

Here + pertains to E&0 and E&0, respectively. The
normalization constant C may be determined if we make
the following identification of the charge density from the
effective-mass trial wave function:

p(r, E)= g (
~
F)I(r,E)

~
+

~
Fij(r,E)

~

2) .
J =—00

(12)

p(E)= —I harp(r, E)= 2 IE I (13)

This gives C=l/P( ~E
~

/2m)'
Even prior to any detailed numerical calculations, a

general understanding of graphite's response to an exter-
nal potential may be obtained by considering some of the
general properties of the scattering phase shifts of Eq.
(11). It can be shown quite generally from the small argu-
ment behavior of the Bessel functions that 5J —+0 as

~

E
~

~0 for any j. The behavior of 5(~i near E=O is,
however, quite pathological:

Equation (12) ignores the actual atomic level variations
in p arising from the Bloch function

~
PJ(E, r) ~; this is

in the spirit of the effective-mass theory. Equation (12)
should also contain cross terms, but these integrate to zero
in each unit cell and we will ignore them as well.

~
Fi

~

and ~Fi
~

may be viewed as the envelope of the charge
densities on the two graphite sublattices. These envelopes
are actually identical after j summation because of the
symmetry between +j and —j solutions:

a( J)(r) =bj(r),
b(,)(r)= a;(r) . —

Given Eq. (12), we can fix C by requiring that the correct
density of states be obtained for U2 ——0:

I

Here f(r) is a rather complicated but slowly varying func-
tion of r which goes to zero logarithmically as r~ao.
Further details of the mathematics leading to this result
are given in the Appendix. This result differs from ordi-
nary Friedel oscillations in several respects: (i) Since the
system is two dimensional, the characteristic power-law
falloff is r rather than r . Still, like the Friedel
charge density Eq. (16) is just barely integrable, made so
only by the behavior of f(r). To this extent we are justi-
fied in our original point of view that the influence of a
defect is very long ranged in graphite. (ii) Equation (16) is
not oscillatory, but goes monotonically to zero in the
asymptotic region. This is understandable since graphite
has kF ——0, so that the "oscillation wavelength" is infinite.
(iii) As mentioned above, the sign of (16) is independent of
the sign of U2(r); charge is depleted at long distance, no
matter what the ionicity of the defect may be.

A further analysis of the phase-shift properties of Eq.
(10) uncovers an important flaw in the effective-mass ap-
proximation for graphite. A study of 5J(E~—00) re-
veals that the phase shift at —00 does not go to an integer
multiple of n", Levinson's theorem' is thus not satisfied in
this system. In fact, this asymptotic phase shift depends
on the details of the defect potential. For example, for a
square-well potential

V, r&r,
Ui(i') = '()

5J (E + —ao )~Vr, —/p independent of j. This demon-
strates that the present theory possesses the undesirable
property that an important physical requirement, the
Friedel rule, '

Z =(2/~) y [5,(0)—5J( —M )], (17)

(14)

Here r, is a, characteristic length scale for the defect po-
tential U2. Otherwise, Eq. (14) has no dependence on the
detailed form of U2, it is even insensitive to U2's sign.
This lowest-order behavior of the phase shift permits us to
deduce the long-range behavior of the induced charge den-

sity in the presence of an impurity. Using an analysis
akin to that used to compute conventional Friedel oscilla-
tions, we find

bp(r) ~ I —sin[5)&2(E)]sin
0 1 2fE /r dE .

r

This integral may be performed by the method of steepest
descents; we will not show the details here. The result is

(16)

can never be satisfied since the right-hand side of Eq. (17)
is infinite. (Z is the valence of the impurity. ) This result
is true no matter what the form of U2(r). The cause for
this unphysical behavior is that in the model the valence
band extends to E= —oo and contains an infinite amount
of charge. The real graphite ~ band, of course, has a fin-
ite bandwidth and contains a single electron per C atom.
This suggests a simple ad hoc correction to the effective-
mass model in which we simply impose a lower cutoff E,
on the effective-mass density of states, with E, chosen to
give the correct average charge density of m electrons.
This is essentially the scheme which we have adopted,
with two improvements. (i) In the spirit of Thomas-Fermi
theory, we take the lower band edge to vary spatially ac-
cording to the strength of the external potential:
E, (r) =E, + Uz(r). (ii) The band edge is taken to be gra-
dual rather than abrupt. This reduces spurious Friedel-
type oscillations arising from the band minimum. This
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scheme is embodied in the following formula for the total
induced charge density Ap(r):

&p(r) = f [f(E U—z(r))p(r, E) f(—E)p (r,E)]dE .

(18)

Here p(r, E) is defined by Eq. (12), with p denoting the
no defect charge density. f(E) is the smooth cutoff func-
tion

2
0)

12
r (A)

24
1 I I I

0, E &Ec —&E

E Ec +&E
5E E, 5E&E—&E, .

1, E)Ec

(19)

Z8Uz"'(r) =
( 2+ 2)1/2 (21)

Uz (r) is the electrostatic potential in the basal plane gen-
erated by the charge sheet bp(r) of Eq. (18):

UH( )
2 f P(r )dr e f j q g4P(g) ~

d
lql

(22)

where hp(q) is the 2D Fourier transform of Eq. (18) ob-
tained by a fast Fourier-Bessel algorithm. We perform
an iterative computation of Eqs. (10), (12), (18), and
(20)—(22) until the potential and charge density are self-
consistent. No exchange interactions are included in the
present model.

E, = —4.3 and 5E=3.0 eV were chosen to match the gra-
phite m charge density. All the numerical results present-
ed below for the effective-mass model use the scheme of
Eqs. (18) and (19). Actually, a much more desirable
scheme is to permit the eigenstates in the presence of the
defect to be constructed only from defect-free eigenstates
lying within the energy range E, &E & —E, . In this way
the spurious states for E~—Oo would be very naturally
projected out. Unfortunately, we judged this approach to
be too cumbersome for practical calculation. The pro-
cedure described by Eqs. (18) and (19) mimics this projec-
tion. Within this scheme the majority of screening effects
arises from states near the Fermi energy rather than deep
in the band, as is physically reasonable. Still, this pro-
cedure has some small deficiencies which limit its applica-
bility to some extent, as we shall describe below.

Finally, we explain our construction of the defect poten-
tial Uz(r). It contains two parts

Uz(r) = U'2"'(r)+ U, (r) .

We take Uz"'(r) to be the potential of a point ion situated
a distance zo above the graphite plane, as seen in the basal
plane [see the comment below Eq. (7)]:

I I I I I I

FIG. 4. Self-consistent defect potential Uz(r) for Z =+ 1 and
zp=2. 7 A. The solid line is the effective-mass result, the dashed
line the Thomas-Fermi result. Note the strong similarity be-
tween them. The dotted-dashed line shows the bare defect po-
tential.

most of the results presented below, the valency of the im-
purity is taken as Z =+1.

Figure 4 shows our results for the induced potential
Uz(r). Here the solid curve shows Uz for our effective-
mass theory, the dotted-dashed curve is the unscreened
impurity potential, and the dashed line is the result of a
Thomas-Fermi screening calculation to be described
below. These results may be understood by noting that
the potential must fall between two limits. If the electrons
behave classically (that is, if the electronic kinetic energy
is irrelevant to the total energy minimization) then the
electrons will form a classical image charge in the basal
plane. The graphite potential thus becomes an equipoten-
tial surface, and Uz (r) =0 The im. age charge is thus one
limit; the real charge density cannot be more localized
than the classical image charge, i.e., the actual Uz(r) can-
not be greater than zero. The other extreme is achieved by
a system in which the electronic kinetic energy is so great
that the electrons are incapable of responding to the exter-
nalgotential and form no screening cloud. In this case
Uz (r)=Uz"'(r), which is shown as the dotted-dashed
line in Fig. 4. The actual result for Uz(r) from the
effective-mass model, shown by the solid line in Fig. 4, is
intermediate between the two limiting cases, indicating
that electron kinetic and potential energies are playing
roughly equal roles in the screening process. The actual
Uz(r) continues to have an algebraically decaying tail, in-
dicative of the long-range response of the graphite plane.
In Fig. 4 we have also compared the effective-mass result
with the Uz(r) obtained using Thomas-Fermi theory
(dashed line). This theory, which has been applied previ-
ously to other graphite systems with slightly different
geometries, is based on a spatially varying assignment of
the Fermi energy,

III. RESULTS EP(r) = —Uz(r) . (23)
In this section we give results of a numerical evaluation

of the equations described above for a single impurity
placed zo ——2.7 A above a graphite plane (see Fig. 1). For

The local charge density is then identified [using Eq. (13)]
as
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FIG. 5. Screening charge density hp(r) multiplied by the

volume element 2mr for a defect with Z=+1 zp=2. 7 A.
Again, the solid line is the effective-mass result, the dashed line

the Thomas-Fermi result. Note the long tail on both of them.
The dotted-dashed line is the classical image charge.

—[U2( )l'
bp(r)= f p(E)dE=

0
i

U2(r)
i
rrP

(24)

The dashed curve in Fig. 4 is a result of an iterative solu-
tion of Eq. (24) along with the Poisson equation, Eqs.
(20)—(22). The effective-mass and the Thomas-Fermi re-
sults are seen to agree rather closely. This is not entirely
unexpected, given that the Thomas-Fermi approximation
should be adequate when the disturbance is slowly varying
in space. Still, the quantitative agreement is somewhat
surprising, and implies that Thomas-Fermi theory is very
useful in examining broad trends in this system. We will
give an example of this sort of analysis below.

Figure 5 shows the induced charge density Ap(r) gen-
erated by U2 of Fig. 4. Again, the effective-mass result is
shown as a solid line and the Thomas-Fermi result as a
dashed line. The strong similarity between them is again
evident. Within the Thorn. as-Fermi approximation, we
can compute the asymptotic behavior of bp(r) as r~ 00.
The result is

bp(r) =+ g(r)
r

(25)

where g(r) is a slowly varying function which goes loga-
rithmically to zero as r~ oo, as in Eq. (16). [Consult the
Appendix for the derivation of Eq. (25).]

The Thomas-Fermi and effective-mass solutions thus
have almost the same asymptotic dependence at large r.
However, one important difference is that while the
effective-mass result is independent of the sign of Uz(r)
for large r, the Thomas-Fermi result follows the sign of
Uz. [This is the meaning of the + in Eq. (25).] For
Z ~0, this means that the two results for bp(r) should
have opposite signs at long distance. In Fig. 5 they have
the same sign. This is probably a result of a deficiency in
the numerical calculation of the effective mass bp(r); it is

difficult to reproduce numerically the rather delicate loga-
rithmic phase-shift singularity of Eq. (14) for E~Ez.
Still, we expect that the com.putation is reliable in the

0

physically relevant "large" region, i.e., 0 p r (30 A.
Figure 5 also shows the hp(r) for the image-charge

model. This charge density is simply

~0bp™(r)= 2' (zo+r )
(26)

As described earlier, the correct charge density is much
smaller near the defect than the image charge (see Fig. 5).
In addition, the effective-mass charge density has a much
more diffuse tail at large r ( —1/r ) than the image charge
( —1/r ) We. would like to summarize these facts by a
single number which characterizes the effective screening
length A, . One possible definition of A, is the first moment
of b,p(r):

A, = f r hp(r)dr . (27)

This is not a useful definition, since it is divergent for
both the effective mass bp(r) and the image model
hp™(r).We therefore choose to define I, in a way which
is related to the median of the charge distribution:

~u zf p(r)dr =— (28)

The W3 factor is chosen such that for the image charge,
A, =zo ——2.7 A. Then using Eq. (28) for the effective mass
or Thomas-Fermi Ap(r) we find A,=3.8 A. Thus by this
measure (and, we suspect, by any other reasonable mea-
sure which could be invented) the screening length is
about 50% larger than an image-charge theory would
predict. Note that we have not included any background
dielectric response for the graphite electrons; if we had,
the predicted would be somewhat larger. We have thus
demonstrated that graphite, because of its semimetallic
electronic structure, screens much less efficiently than an
ideal metal, even a two-dimensional one. It is also in-
teresting to note that Ref. 8, in a Thomas-Fermi model
for screening perpendicular to graphite planes, found a
very similar screening length, A, =4 A, despite the dif-
ferent geometry and some differences in the definition of

We will explore the implications of this result for in-
tercalation compounds of graphite in Sec. IV.

Another consequence of the unusual electronic structure
of graphite is the dependence of the screening on the
valency of the defect Z. Figure 6 shows the dependence
on Z of the self-consistent potential at the origin. This
curve has been generated numerically via the Thomas-
Fermi approach. The Thomas-Fermi theory has exact
Z~ —Z symmetry. The effective-mass model, on the
other hand, does not have this exact symmetry; neverthe-
less, the effective-mass results are nearly +Z symmetric,
and they lie close to the Thomas-Fermi curve for
~Z

~

—1, confirming the similarity of the two models.
For

~

Z
~

&&1 the effective-mass points lie well below the
curve in Fig. 6. This results from our valence-band cutoff
procedure, Eqs. (18) and (19). When

~

Z
~

becomes small,
the small screening effects which we wish to study near
EF are masked by numerical noise in the cutoff procedure
at the bottom of the band. For this reason, it is more ap-
propriate to use the Thomas-Fermi calculation to study
the general trends of the screening potential.
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1(eV)

z
FIG. 6. Total potential U2(r) at r =0, divided by thc defect

valency Z, as a function of Z. This curve has been computed in
the Thomas-Fermi model, and shows the nonlinearity of the
response with Z. The cusp at the origin is real and demonstrates
that linear-response theory is never valid.

The behavior of the curve in Fig. 6 can be understood
with some fairly simple arguments. The relative magni-
tude of the screened potential decreases with increasing Z;
this means that the screening is becoming more effective
(i.e., is approaching the image-charge result in the
language of our earlier discussion) because the density of
states at Ez in the vicinity of the defect, p(E~(r)) [see
Eqs. (13) and (24)], is becoming larger. It is not clear
whether the screening becomes entirely imagelike as
Z~ao,' the curve is falhng only gradually towards this
hmit. In the opposite limit, Z~O, the density of states at
EF remains very low. Consequently the screening be-
comes very ineffective (the "kinetic-energy-dominated** re-
gime discussed above), and

~
U2(0)/Z

~

~e /zo. A study
of the Thomas-Fermi equations shows that the curve in
Fig. 6 has a genuine cusp at Z =0, and its derivative is ac-
tually undefined at the origin. This result has the impor-
tant consequence that a linear-response model for impuri-
ty screening in graphite is not applicable even for very
small impurity potential. This is so because a linear rela-
tion between external potential and total potential,
U2-+U2"', would imply that the derivative,

is zero for small Z. Figure 6 shows that this never hap-
pens. The fundamental reason is that p(Ez) can never be
assumed to be nearly constant, no matter how small Z is,
since p(E~) is nonanalytic at E~ 0. Impurity scr——eening
in graphite is thus intrinsically and unavoidably a non-
linear problem.

IV. DISCUSSION

In the above section we have presented results for the
induced potential and charge density of a single inter-
calant inside a graphite host. More typically, of course,
we are interested in the charge distribution induced by an
entire layer of intercalants. %C may apply our results to
this problem with the zeroth-order approximation that the
total chaI'ge density or potential is simply a linear super-
position of contributions from each separate atom. With
this assumption, we find that our model predicts that for
an intercalant layer of typical density in a graphite inter-

calation compound (between —,
' and —,', of an intercalant

per C atom), the charge transferred to the graphite layer is
qmte homogeneously distributed, with only a small
enhancement of charge near the intercalants and a small
depletion away from them. This is a result of both the
large median distance of the induced charge from the im-
purity, which at 3.8 A is comparable to the distance be-
tween intercalants, as well as of the extended algebraic tail
contributed by each charge cloud.

A variety of both theoretical and experimental studies
has attempted to quantify the homogeneity of the excess
charge density on the graphite planes, with conflicting re-
sults. A very reliable and accurate theoretical computa-
tion of the in-plane charge distribution of LiC6 by
Holzwarth et al. was capable of showing differences be-
tween the charge densities of C—C o bonds at different
distances froI11 a Li llltelcalallt. T111s study did Ilot exam-
ine the in-plane inhomogeneities in the C m states, nor
would it have been able to study the dependence of this in-
homogeneity on the in-plane Li density. A Huckel study
of a model acceptor system ' has found the transferred
charge density to be highly localized on C atoms neigh-
boring the intercalant. However, this study cut off the
Hartlce mtcractlon at short range~ wh1ch IDay well IDlss
the essential physics of the screening. Among the experi-
mental studies, the C ls x-ray photoenussion spectroscopy
(XPS) measurements by DiCenzo et al. on Li- and K-
intercalated graphite deduced the presence of inequivalent
C sites by the analysis of the broad asymmetric C ls line
shape. On the basis of the distribution of C ls binding en-
ergies deduced from this line-shape analysis, the authors
conclude that the transferred n. charge density is highly
lnhomogcneous, bc1Qg strongly localized on thc ncarcst-
neighbor C atoms to the intercalant. The authors further
conclude that the potential energy induced by the presence
of the intercalant is more positive for electrons near C nu-
clei neighboring the intercalant atoms than for those near
more-distant C sites. These conclusions are not supported
by the present study. Given the strong delocalization of
transferred n charge predicted by our theory, we expect
that the different C atoms should be only weakly distin-
guishable according to their is binding energy. Further-
more, our model would predict that C atoms closer to the
intercalant will lie in a more negative potential well than
more distant C atoms rather than the more positive poten-
tial deduced in Ref. 3. This follows from our argument
that the attI'active external ion potential denoted U2"
above can only be incompletely screened by polarization
of the graphite m electrons since graphite is a nonideal
metal. Thus for intercalated donors the net potential U2
seen by the C cores must be negative and weakly mono-
tonically increasing with increasing distance from the in-
tercalant. More evidence comes from a recent measure-
ment of the C is Ez energy-loss function for first-stage
alkali compounds which indicates that the threshold line
shape is not consistent with the proportions of ine-
quivalent C's reported in the XPS study. In addition, a
recent ' C NMR study in a variety of K-intercalated com-
pounds reportedzz only small difference between Knight
shifts of C atoms in the same layer. A possible explana-
tion of the XPS data is that the collective response of the
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C valence electrons to the Is core hole in graphite differs
from the assumed response of an ordinary 3D metal.

A theoretical study of the 1s energy-loss threshold in
stage-1 FeC13-intercalated graphite previously found that
the ls core absorption spectra are strongly influenced by
the energy dependence of the graphite empty density of
states. We have made a preliminary study of the core ex-
citon problem using the present effective-mass theory.
This calculation is identical to the model intercalation
problem described above, with zo ——0 (i.e., the perturbing
potential in the graphite plane) and Z=1 corresponding
to the ionized ls level. We have also varied E~ to study
the effect of different band fillings of the acceptors and
donors on the core spectrum. This approach differs from
the lattice model of Ref. 24 in that we compute the Har-
tree potential of the screening charge, and thus obtain a
self-consistent valence-electron response. The core ab-
sorption profile (proportional to the square of the upper
spinor component of the j=—,

' effective-mass wave func-
tions at r =0) again shows substantial excitonic modifica-
tions to the line shape. We find a strong difference in the
core-hole response between donor and acceptors. Unfor-
tunately, the effective-mass approximation is incapable of
making reliable quantitative predictions of these line
shapes. This is so because, unlike the impurity screening
response, the core-hole response is found to contain a
highly localized component, which violates the assump-
tions of our continuum effective-mass theory. This locali-
zation occurs both because the external potential is more
localized for zo ——0 than for zo&0, and because the host is
more metallic when EF&0. These results suggest that it
would be appropriate to reexamine this problem theoreti-
cally using the lattice model of Ref. 24, but with self-
consistency effects included. A proper description of the
1s line shape in either absorption or photoemission may
also require a consideration of electronic many-body ef-
fects beyond the final-state rule and specific to the col-
lective response of the graphite m charge.

Our present calculation is also relevant to our previous
study of intercalant-intercalant in-plane binding; we previ-
ously found that the effective Coulomb interaction be-

tween ions becomes attractive at large in-plane lattice con-
stant because of the presence of the transferred charge
on the adjoining graphite plane. Further, we find that this
Coulomb potential dominates the total potential between
Li ions and contributes to a stable minimum in the Li
interaction at a lattice constant corresponding to a Li den-

sity of approximately LiC7. However, these results are
contingent on the assumption that the charge density
transferred to the C n bands remains nearly homogeneous-

ly distributed throughout the range of a physical in-plane
lattice constant [e.g., v 3&&(2.46 A.) &ao&v 2X~3
&((2.46 A) for Li-intercalated graphite]. This assumption
is justified by the present work, which indicates that inho-
mogeneities of the in-plane charge density will only have
important effects on the Coulomb potential for ao )4 A.
Thus the use of the in-plane interaction which we previ-
ously derived in, for example, mean-field studies of inter-
calant phase diagrams seems to be satisfactory in the re-
gion of interest.

The effective-mass approach which we have presented

here provides a particularly elegant and useful mathemati-
cal description of a variety of electronic phenomena in
graphite intercalation compounds. There are a number of
obvious extensions to the work presented here which
would be relevant to other problems of present interest.
For example, Eq. (8) could accommodate a potential Uz(r)
corresponding to a lattice of impurities; the solution of the
effective-mass equations would proceed in the spirit of an
ordinary self-consistent band-structure calculation (but
would be much more tractable). Such a calculation is im-
portant since there are likely to be significant nonlineari-
ties (i.e., departures from the simple superposition rule
used above) as a function of intercalant density which re-
sult from the dependence of the density of states at EF on
the charge density. Still, we do not expect to see the
strong induced charge-density wave as predicted in the ac-
ceptors. ' This calculation could provide the basis for a
quantitative discussion of the XPS line shape in alkali-
metal-intercalated graphites. A definitive study would
include the effects of three dimensionality, and of inter-
valley and umklapp scattering; systematic procedures for
including these exist within the effective-mass frame-
work.

To summarize, we have constructed an effective-mass
theory which permits a calculation of many of the elec-
tronic properties of alkali-metal —intercalated graphites
without the extraordinary labor of the full-band-structure
approach. For the single-impurity problem, we find an in-
duced charge density which is much more diffuse than
predicted by image-charge theory. This extended
response, which is also accurately predicted by Thomas-
Fermi theory, results from the reduced dimensionality and
the semimetallic band structure of the graphite host. The
unusual band structure also causes the corresponding
linear-response theory of impurity screening to be invalid
under all circumstances. Our calculation supports the
point of view that the transferred charge in a typical
alkali-metal —intercalated graphite compound is nearly
homogeneously distributed on the bounding C planes.
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APPENDIX

A very important and surprising result of the present
work is that the asymptotic behavior of the screening of a
point charge by a graphite layer is hp(r)-1/r . This is
much slower than bp(z)-1 jz (Ref. 8) for the screening
of a plane of charge embedded in a stack of graphite
planes, and it provides a significant contribution to our ar-
gument that the screening charge for an array of inter-
calants is homogeneously distributed on the bounding gra-
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phite plane. In this Appendix we present details of the
derivation of this result both within the effective-mass
theory and the Thomas-Fermi approximation.

To obtain the asymptotic behavior hp(r)- f—(r)/r in
effective-mass theory [Eq. (16) in the text], we return to
Eq. (14) for the j= —, phase shift near EF 0 —i—n the pres-
ence of a potential. This may be obtained by using the 2D
phase shift formula derived using Eq. (11):

hp(ar) = f1 o 1

2/E'/r
p

/E'/r,
1n

2p

(A5)

If a is close to unity then lna may be ignored and (A5) be-
comes

kJ~(kr, ) yj—J~(kryo)
tan5J =

kN' (kr, ) yJN—(kr, )
(A 1) hp(ar )= hp(r),1

(A6)

Here k =—
~

E
~

/p and the prime indicates a derivative with
respect to the argument of the Bessel function. The loga-
rithmic derivatives y~ may be assumed to vary smoothly
in the neighborhood of E=O. We also assume that the
defect potential Uz(r) vanishes outside a cutoff radius r, .
The small-E behavior of the j=—, phase shift is obtained

by using the small argument expressions for Jo and No.

Jo(x}= 1, Jo(x)=0,

which is only consistent with

(A7)

hp(r) =- f(r)
p

2
(A8)

Because of the lna term in (A5), hp(r) actually goes to
zero somewhat more rapidly than 1/r; hence we write

No(x)=(2/m. )ln(x/2) No(x)=4/mx .

Substituting (A2) in (Al) gives

tan 5J»& ——

)E/r,
2p

271/2
ln 21n

2p

(A3)

This is Eq. (14) in the text. As mentioned, (A3) is in-
dependent of y, &z, and therefore of the strength of the po-
tential; if the potential is very weak, however, (A3) will be
valid only very close to

~

E
~

—+0.
To connect the phase shift in Eq. (A3) to the asymptot-

ic form of hp(r) for r~ oo we square the wave function in
Eq. (11), subtract the zero-phase-shift charge density, and
make use of the asymptotic trigonometric expansions for
the Bessel functions for large argument. (The details of
the procedure are outlined in Ref. 6.) This leads to

hp(r)-

Uz(r)-

One relation between n and m is provided by Eq. (24).
It says that hp ~ (Uz); therefore, n =2m. A second rela-
tion is given by the Poisson equation, which relates hp
and U in Eq. (22). hp(q) is defined by

A2) Eq. (16} in the text. Since (A8) must be integrable, f(r)
must go to zero for r —+Do,' however, it must go more
slowly than any power law. A numerical determination of
f(r) can also be made by evaluating (A4) by steepest de-
scents, with the saddle point of the integration lying on
the imaginary energy axis.

The construction of the asymptotic behavior of hp(r) in
the Thomas-Fermi theory proceeds rather differently, al-
though the result is essentially the same. I.et us suppose
that both hp(r) and Uz(r) obey some asymptotic power
law:

0-f p

hp(r~oo) cc f —sin[5J(E)]sin dE
o 1 . . 2(E r

J p
(A4)

hp(q) = f dr hp(r) e' q' '

=2m f dr rhp(r) Jo(qr ) . (A10)

To obtain hp(q} for small q (but sufficiently large enough
so that qr & 1) we insert the asymptotic expression for Jo
and obtain

ln
2p hp(q)-q" (A 1 1)

Eq. (15). The limit in the integral indicates that for
r~ oo, the largest contribution comes from very near (but
not exactly) E=O. We have used the theorem from
Fourier transforms that the most severe singularity will
dominate the large-argument regime of the transform; this
restricts (A4) to the j= —,

'
channel, whose phase shift con-

tains a more severe singularity in its derivative than for
j~ T. The leading power-law behavior of (A4) is obtained
as follows. Consider Ap for a scaled argument ar:

when hp(r) -r ". By Eq. (24), Uz is

Uz (r) ~ f e 'q'' P q dq ~ f dqhp(q)Jo(qr) .

By the same approximation as above, this leads to

(A12)

(A13)

So m =1 n This and the—co.ndition n =2m are satisfied
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only if n =2, m = 1. [Note that the external potential U2"'

in Eq. (21) also contributes a I/r' part to the total poten-
tial, and so is consistent with the above conclusion. ] We
therefore find, as in the effective-mass theory, that the
leading power-law dependence of bp is 1lr . Of course,
bp must be integrable, which leads us to our final form
for bp [Eq. (25)]:

hp(r) =+ g(r)
r

(A14)

where g(r) goes to zero as r~ao more slowly than any
power of r I.t cannot be determined from the present
analysis if g(r) in Eq. (A14) and f(r) in the effective-mass
theory [Eq. (A8)] are related.
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