PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 10:

Introduction to groups having infinite dimension

Reading: Eric Carlson's lecture notes

- 1. Example 3-dimensional rotation group
- 2. Some properties of continuous groups

2/3/2017

PHY 745 Spring 2017 -- Lecture 10

		(Preliminary	schedule subject to frequent adjustn	nent.)	
	Lecture date	DDJ Reading	Topic	HW	Due date
1	Wed: 01/11/2017	Chap. 1	Definition and properties of groups	#1	01/20/2017
2	Fri: 01/13/2017	Chap. 1	Theory of representations		
	Mon: 01/16/2017		MLK Holiday - no class		
3	Wed: 01/18/2017	Chap. 2	Theory of representations		
4	Fri: 01/20/2017	Chap. 2	Proof of the Great Orthonality Theorem	#2	01/23/2017
5	Mon: 01/23/2017	Chap. 3	Notion of character of a representation	#3	01/25/2017
6	Wed: 01/25/2017	Chap. 3	Examples of point groups	#4	01/27/2017
7	Fri: 01/27/2017	Chap. 4 & 8	Symmetry of vibrational modes	#5	01/30/2017
8	Mon: 01/30/2017	Chap. 4 & 8	Symmetry of vibrational modes	#6	02/01/2017
9	Wed: 02/01/2017	Chap. 8	Vibrational excitations	#7	02/03/2017
10	Fri: 02/03/2017	Notes	Continuous groups	#8	02/06/2017
11	Mon: 02/06/2017				
12	Wed: 02/08/2017				
13	Fri: 02/10/2017				
14	Mon: 02/13/2017				
15	Wed: 02/15/2017				

Consider a three-dimensional rotation. For example a rotation by angle α about the z-axis, transforms as follows:

$$R_{\alpha} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

These rotations follow the multiplication rule

$$R_{\beta}R_{\alpha} = R_{\gamma}$$
 where $\gamma = \alpha + \beta$

$$R_{\beta}R_{\alpha} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) & 0 \\ -\sin(\alpha + \beta) & \cos(\alpha + \beta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

2/3/2017 PHY 745 Spring 2017 -- Lecture 10

Evidently, the set of all rotations $\boldsymbol{\alpha}$ about the z-axis form a group

- 1. $R_{\beta}R_{\alpha} = R_{\gamma}$
- 2. The identity exists: $E = R_{\alpha=0}$
- 3. Inverses exists: $R_{\alpha}^{-1} = R_{-\alpha}$
- 4. The associative relation holds: $(R_{\gamma}R_{\beta})R_{\alpha} = R_{\gamma}(R_{\beta}R_{\alpha})$

Thanks to Euler, we can generalize the notion to say that all three-dimensional rotations form a group

PHY 745 Spring 2017 -- Lecture 10

Spherical polar coordinates

2/3/2017

Spherical harmonic basis functions:
$$Y_{00}\left(\hat{\mathbf{r}}\right) = \frac{1}{\sqrt{4\pi}}$$

$$Y_{\mathrm{I}(\pm 1)}\left(\hat{\mathbf{r}}\right) = \mp \sqrt{\frac{3}{8\pi}} \sin\theta \ e^{\pm i\varphi}$$

$$Y_{\mathrm{I0}}\left(\hat{\mathbf{r}}\right) = \sqrt{\frac{3}{4\pi}} \cos\theta$$

$$Y_{\mathrm{2}(\pm 2)}\left(\hat{\mathbf{r}}\right) = \sqrt{\frac{15}{32\pi}} \sin^2\theta \ e^{\pm 2i\varphi}$$

$$Y_{\mathrm{2}(\pm 1)}\left(\hat{\mathbf{r}}\right) = \mp \sqrt{\frac{15}{8\pi}} \sin\theta \ \cos\theta \ e^{\pm i\varphi}$$

$$Y_{\mathrm{20}}\left(\hat{\mathbf{r}}\right) = \sqrt{\frac{5}{4\pi}} \left(\frac{3}{2} \cos^2\theta - \frac{1}{2}\right)$$

It can be shown that

$$R_{\alpha}Y_{lm}(\theta,\phi) = \sum_{m'=-l}^{l} M_{mm'}^{l} Y_{lm'}(\theta,\phi)$$

Apparently: $M_{00}^0 = 1$

Consider the case for l = 1:

$$Y_{1(\pm 1)}(\hat{\mathbf{r}}) = \mp \sqrt{\frac{3}{8\pi}} \sin \theta \ e^{\pm i\phi} = \mp \sqrt{\frac{3}{8\pi}} \frac{x \pm iy}{r}$$
$$Y_{10}(\hat{\mathbf{r}}) = \sqrt{\frac{3}{4\pi}} \cos \theta = \sqrt{\frac{3}{4\pi}} \frac{z}{r}$$

$$R_{\alpha} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \alpha \ x + \sin \alpha \ y \\ -\sin \alpha \ x + \cos \alpha \ y \\ z \\ \text{PHY 745 Spring 2017-Lecture 10} \end{pmatrix}$$

Case for I=1 - continued --

$$R_{\alpha}Y_{1(\pm 1)}(\hat{\mathbf{r}}) = \mp \sqrt{\frac{3}{8\pi}} R_{\alpha} \left(\frac{x \pm iy}{r}\right)$$

$$= \mp \sqrt{\frac{3}{8\pi}} \frac{\left(\cos\alpha x + \sin\alpha y\right) \pm i\left(-\sin\alpha x + \cos\alpha y\right)}{r}$$

$$= \mp \sqrt{\frac{3}{8\pi}} \left[\left(\cos\alpha \mp i\sin\alpha\right) \left(\frac{x \pm iy}{r}\right)\right]$$

$$= e^{\mp i\alpha}Y_{1(\pm 1)}(\hat{\mathbf{r}})$$

$$\Rightarrow M^{1} = \begin{pmatrix} e^{-i\alpha} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{i\alpha} \end{pmatrix} \qquad (m = 1, 0, -1)$$

2/3/2017 PHY 745 Spring 2017 -- Lecture 10

More generally, it can be shown that:

$$M^{l}_{mm'}=e^{-im\alpha}\delta_{mm'}$$

Considering the spherical harmonic functions as basis functions of the three-dimensional rotation group, we can associate the matrix elements M_{mm}^{l} as irreducible representations. In this case, for each l, the dimension of the representation is (2l+1).

$$D_{mm'}^{l}(\alpha) = e^{-im\alpha} \delta_{mm'}$$
 for $-l \le m, m' \le l$

From this result, we can determine the characters of these representations:

$$\chi^{l}(\alpha) = \sum_{m=-l}^{l} e^{-im\alpha} = e^{-il\alpha} \frac{e^{i\alpha(2l+1)} - 1}{e^{i\alpha} - 1} = \frac{\sin\left[\left(l + \frac{1}{2}\right)\alpha\right]}{\sin\left(\frac{\alpha}{2}\right)}$$

Sanity check:

Note that the character of the identity class: $\chi^{l}(E) = 2l + 1$

Now consider the great orthogonality theorem:

$$\sum_{R} \left(D^{\Gamma_n}(R)_{\mu\nu} \right)^* D^{\Gamma_{n'}}(R)_{\alpha\beta} = \frac{h}{l_n} \delta_{nn'} \delta_{\mu\alpha} \delta_{\nu\beta}$$

For continuous groups, the summation becomes an integral:

$$\int \left(D^{\Gamma_n}(R)_{\mu\nu}\right)^* D^{\Gamma_{n'}}(R)_{\alpha\beta} dR = \frac{\delta_{nn'}\delta_{\mu\alpha}\delta_{\nu\beta}}{l_n} \int dR$$

2/3/2017

PHY 745 Spring 2017 -- Lecture 10

In terms of the characters of the representations:

$$\left| \int \left(\chi^{\Gamma_n}(R) \right)^* \chi^{\Gamma_{n'}}(R) dR \right| = \delta_{nn'} \int dR$$

Procedure for carrying out integration over group elements In general, there will be continuous parameter(s) which characterize each group element $R = R(\alpha, \beta, ...)$ $\int dR \Rightarrow \int g(R(\alpha, \beta...)) d\alpha d\beta... \quad \text{where } g(R(\alpha, \beta...)) \text{ represents}$ the density of group elements in the neighborhood of R in the parameter space of $\alpha, \beta...$

2/3/2017

PHY 745 Spring 2017 - Lecture 10

Digression – "generators" of the three-dimensional rotation group

Consider rotation by an angle α about the z-axis

Let $\psi(\phi)$ denote the probability distribution for a quantum system in terms of its angle ϕ .

$$\langle \phi \rangle = \int d\phi \psi(\phi)^* \phi \psi(\phi)$$

$$\langle \phi \rangle + \alpha = \int d\phi \psi(\phi)^* (\phi + \alpha) \psi(\phi)$$
$$= \int d\phi' \psi(\phi' - \alpha)^* \phi' \psi(\phi' - \alpha)$$

2/3/2017

PHY 745 Spring 2017 -- Lecture 10

Taylor expansion:	
$\psi(\phi' - \alpha) = \psi(\phi') - \alpha \frac{\partial \psi(\phi')}{\partial \phi'} + \frac{1}{2} \alpha^2 \frac{\partial^2 \psi(\phi')}{\partial \phi'^2} + \dots$	
$=e^{-\alpha\frac{\partial}{\partial\phi'}}\psi(\phi')$	
$=R_{-\alpha}\psi(\phi')$	
Generator operator for rotation: $= e^{-\alpha \frac{\partial}{\partial \phi'}}$	
2/3/2017 PHY 745 Spring 2017 Lecture 10 13	