PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 1:

Reading: Chapters 1 in DDJ (Dresselhaus, Dresselhaus, and Jorio)

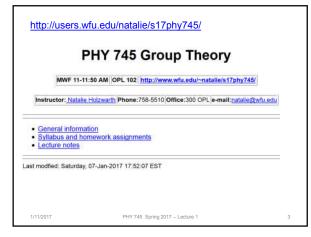
1. Course structure and expectations

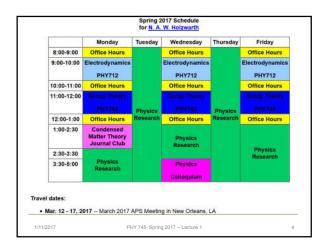
PHY 745 Spring 2017 - Lecture 1

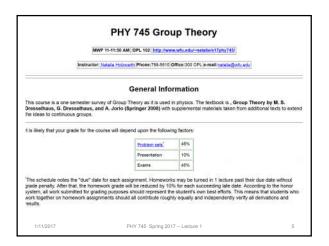
- 2. Definition of a group
- 3. Some examples

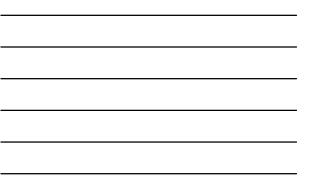
1/11/2017

<section-header><section-header><section-header><section-header><section-header><section-header><complex-block><complex-block>









	N	IWF 11-11:50 AM	OPL 102 http://www.wfu.edu/~natalio	e/s17phy745/	
	Instructo	m Natalie Holzwa	th Phone:758-5510 Office:300 OPL e-r	nall:natale@w	fu.edu
			se schedule for Spring 20		
	Lecture date	(Preliminary DDJ Reading	schedule subject to frequent adjus	tment.)	Due date
1	Wed: 01/11/2017	Chap. 1	Definition and properties of groups	#1	01/18/2017
2	Fri: 01/13/2017	Chap. 1	Subgroups and classes		01/18/2017
	Mon: 01/16/2017		MLK Holiday - no class		
3	Wed: 01/18/2017		1		
4	Fri: 01/20/2017				
5	Mon: 01/23/2017				1
27	Wed: 01/25/2017			1	
6					

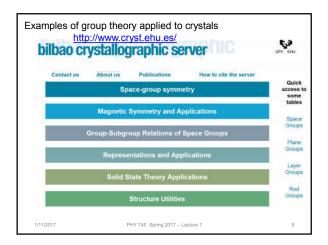
Group theory

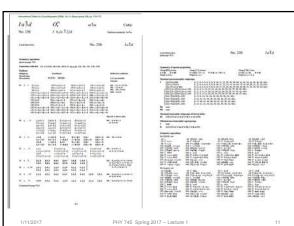
An abstract algebraic construction in mathematics Definition of a group:

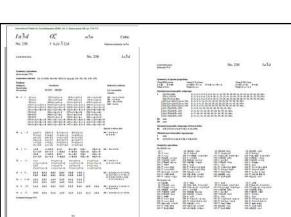
A group is a collection of "elements" $-A, B, C, \ldots$ and a "multiplication" process. The abstract multiplication (·) pairs two group elements, and associates the "result" with a third element. (For example $(A \cdot B = C)$.) The elements and the multiplication process must have the following properties.

- 1. The collection of elements is closed under multiplication. That is, if elements A and B are in the group and $A \cdot B = C$, element C must be in the group.
- 2. One of the members of the group is a "unit element" (E). That is, for any element A of the group, $A \cdot E = E \cdot A = A$.
- 3. For each element A of the group, there is another element A^{-1} which is its "inverse". That is $A \cdot A^{-1} = A^{-1} \cdot A = E$.
- The multiplication process is "associative". That is for sequential mulplication of group elements A, B, and C, (A · B) · C = A · (B · C).
 1/11/2017 PHY745 Spring 2017 - Lettre 1

Some definitions:	
Order of the group → number of elements (members the group (positive integer for fin group, ∞ for infinite group)	,
Subgroup → collection of elements within a which by themselves form a grou	0 1
 What does this have to do with physics? Provides valuable analysis tools for physical ob we know – crystals, molecules, etc. Provides framework for understanding physical processes we don't yet understand – particle p 	
1/11/2017 PHY 745 Spring 2017 - Lecture 1	8







G	roi					atic	n table 6	A C	B	
	Е	A	B	C	D	F		2 3	A	
E	E	A	В	C	D	F			. (
A	A	Е	D	F	в	С		1 I		\wedge
в	в	F	Е	D	С	Α		12 2		15 4
С	C	D	F	Е	A	в		A	Δ D	A
D	D	С	A	в	F	Е		/2 3	/C/	
F	F	в	С	A	Е	D				
F	F	В	С	Ā	Е	D			AF	<u></u>

	E	Α	в	C	D	F	Check on group properties:
Е	Е	A	в	C	D	F	 Closed; multiplication table uniquely generates group
A	A	Е	D	F	в	С	members.
в	В	F	Е	D	С	Α	2. Unit element included.
С	С	D	F	E	Α	В	3. Each element has inverse.
D	D	С	Α	В	F	Е	4. Multiplication process is
F Sul	F bgro	B	с : те	A emb	E ers	D of la	associative. arger group which have the property
Sul this	bgro s case Subg Subg Subg Not	oup e: group group group e th	: me c o g ₁ : o g ₂ : o g ₅ : at th	emb of a <i>E</i> (<i>E</i> , <i>I</i> (<i>E</i> , <i>I</i> ne o	ars grou 4); (2, F) orde	of la up Subg rs of	associative. arger group which have the property group g_3 : (E,B) ; Subgroup g_4 : (E,C) f the subgroups are 1, 2, 3 which are f the group (6).

	-	
	Spring 2017	

Other details									
$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Example consider the right cosets of $\mathbf{g}_2 = (E, A)$									
$g_2 E \rightarrow E, A$ Note that each pair of right cosets are									
$\mathbf{g}_2 A \rightarrow A, E$ either identical or completely distinct.									
$\mathbf{g}_2 B \to B, D$	$\mathbf{g}_2 B \to B, D$ Distinct cosets:								
$\mathbf{g}_2 C \to C, F$ (E, A)									
$\mathbf{g}_2 D \rightarrow D, B$	(B,F)								
$\mathbf{g}_{2}F \rightarrow F, C$	(C,D)								
1/11/2017	PHY 745 Spring 2017 - Lecture 1	15							

Notions of subgroups and their cosets result in the theorem: *The order of a subgroup is a divisor of the order of the group.*

Definition:

An element $B = XAX^{-1}$ is defined as conjugate to element *A*, where *X* is any element of the group.

Definition:

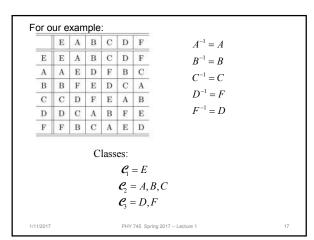
A class is composed of members of a group which are generated by the conjugate construction:

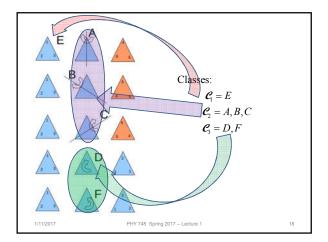
 $C = X_i^{-1}YX_i$ where Y is a fixed group element and X_i are all of the elements of the group.

1/11/2017

PHY 745 Spring 2017 - Lecture 1

16





1.G 2.G 3.G	Other examples –1. Groups of order 1: E (only possibility)2. Groups of order 2: E, A with $A^2=E$ (only possibility)3. Groups of order 3: E, A, B with $A^2=B$ and $A^3=E$ 4. Groups of order 4:										
	Pos	sibility	/ #1				Pos	sibility	#2		
	Е	Α	в	С	C E A B C						
E	Е	Α	в	С		E	Е	Α	В	C	
Α	Α	В	С	Е		Α	A	Е	С	в	
В	в	С	Е	Α		в	в	с	E	Α	
С	С	Е	Α	в		С	С	в	Α	Е	
5. Groups of prime order are always cyclic and Abelian. 1/11/2017											

Special groups and terminologies

A group is called **Abelian** if for every pair of elements *A*,*B*; *AB=BA*.

A group is called **cyclic** if all the elements can be formed according to $X, X^2, X^3, \dots, X^n = E$ *n* is called the order of *X* (the period).

Recall for n=4 example:

		-		-	1 I		E	Α	A ²	A ³
	E	A	в	С			_			
Е	Е	Α	В	С	1	E	E	A	A ²	A ³
Α	Α	в	С	Е	→	Α	Α	A ²	A ³	E
	^			-	4 1	A ²	A ²	A ³	F	Δ
B	в	С	E	A		~	<u> </u>	~	-	^
	-	-		-	-	A ³	A ³	Е	A	A ²
C	С	E	A	в						
1/11/2017			PH	IY 745 Spri	ng 2017	Lecture 1				20

