
4/10/2017

1

4/10/2017 PHY 745  Spring 2017 -- Lecture 32 1

PHY 745 Group Theory
11-11:50 AM  MWF  Olin 102

Plan for Lecture 32:

Introduction to linear Lie groups

1. Notion of linear Lie group

2. Notion of corresponding Lie algebra

3. Examples

Ref.  J. F. Cornwell, Group Theory in 
Physics, Vol I and II, Academic Press (1984)
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Definition of a linear Lie group

1. A linear Lie group is a group
• Each element of the group T forms a 

member of the group T’’ when “multiplied” by 
another member of the group T”=T·T’

• One of the elements of the group is the 
identity  E

• For each element of the group T, there is a 
group member  a group member T-1 such 
that T·T-1=E.

• Associative property: T·(T’·T’’)= (T·T’)·T’’
2. Elements of group form a “topological space”
3. Elements also constitute an “analytic manifold”

Non countable number elements lying in a region 
“near” its identity
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Definition:  Linear Lie group of dimension n
A group G is a linear Lie group of dimension n if it satisfied 
the following four conditions:
1. G must have at least one faithful finite-dimensional 

representation  which defines the notion of distance.
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Definition:  Linear Lie group of dimension n   -- continued
2. Consider the distance between group elements T

with respect to the identity E -- d(T,E).   It is possible 
to define a sphere   M that contains all elements T’
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Definition:  Linear Lie group of dimension n   -- continued
3. There must exist
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2 2

2 unitary matrices

having determinant 1.

An element of the group has the form:

       

Example:    G is the gr

      

oup SU(2) of  a

   =     with 
* *

ll 2

1
 

 
 



 
  

u

 

  

2 2

2 2

2 2 21
1

1 2 1 2

1 1

1 1

1/ 2
1 1 1

2 21 2 1 42 1 32 2 3 2

, , , :

3-dimensional mappi

In terms of the real numbers  

             1

ng:

i i

i i

x xx x xx

   

   

   

   

 
  

 

 

  



   

u

4/10/2017 PHY 745  Spring 2017 -- Lecture 32 8
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Example:    G is the group SU(2)   -- continued

It can be shown that
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Some more details
4. There is a requirement that the corresponding 

representation is analytic
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Example:    G is the group SU(2) of  all 2 2 unitary matrices

having determinant 1.
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In terms of the real numbers  
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2 unitary matrExample:    G ices

having det

is the group SU(2) of  all 2

erminant 1    --   continued
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It can be shown that the matrices ap form the basis 
for an n-dimensional vector space.
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Correspondence between a linear Lie group and its 
corresponding Lie algebra

0

Definition:    For any matrix M, the matrix exponential function

                     is defined as follows:  
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Note that the last result is attributed to Campbell-Baker-
Hausdorff formula.
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very convenient properties:
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Definition:    Real Lie algebra

A real Lie algebra of dimension 1 is a real vector space

of dimension  which includes a comutator [ , ] as

follows:
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1 2

1

Structure constants of Lie algebra

Consider the n basis matrices of , ,... : the algebra 

   for , =1,2 . n[ . , .]
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Example:    G is the group SU(2) of  all 2 2 unitary matrices

having determinant 1   
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Structure constants for this case:
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Fundamental theorem –

For every linear Lie group there exisits a 
corresponding real Lie algebra of the same 
dimension.  For example if the linear Lie group has 
dimension n and has mxm matrices a1, a2,….an then 
these matrices form a basis for the real Lie algebra.


